Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 10, pp 1118–1135 | Cite as

Plant factories for the production of monoclonal antibodies

  • E. V. Sheshukova
  • T. V. Komarova
  • Y. L. DorokhovEmail author
Review

Abstract

Like animal cells, plant cells bear mechanisms for protein synthesis and posttranslational modification (glycosylation and phosphorylation) that allow them to be seriously considered as factories for therapeutic proteins, including antibodies, with the development of biotechnology. The plant platform for monoclonal antibody production is an attractive approach due to its flexibility, speed, scalability, low cost of production, and lack of contamination risk from animal-derived pathogens. Contemporary production approaches for therapeutic proteins rely on transgenic plants that are obtained via the stable transformation of plant cells as well as the transient (temporary) expression of foreign proteins. In this review, we discuss present-day approaches for monoclonal antibody production in plants (MAPP), features of carbohydrate composition, and methods for the humanization of the MAPP carbohydrate profile. MAPPs that have successfully passed preclinical studies and may be promising for use in clinical practice are presented here. Perspectives on using MAPPs are determined by analyzing their economic benefits and production rates, which are especially important in personalized cancer therapy as well as in cases of bioterrorism and pandemics.

Key words

monoclonal antibody immunoglobulin G glycosylation antibody-dependent cellular cytotoxicity immunotherapy plant viruses vector 

Abbreviations

ADCC

antibody-dependent cellular cytotoxicity

ALG

asparagine-linked glycosylation

Asn297

asparagine residue at position 297 in IgG heavy chain

BeYDV

bean yellow dwarf virus

CH

constant region of immunoglobulin heavy chain

CL

constant region of immunoglobulin light chain

CMP-Neu5Ac

CMP-acetylneuraminic acid

CPMV

cowpea mosaic virus

EGFR

epidermal growth factor receptor

ER

endoplasmic reticulum

EV

Ebola virus

Fab

fragment antigen binding

Fc

fragment crystallizable

Fuc

fucose

FUT11,12

α1,3-fucosyl transferase 11 and 12

FUT13

α1,4-fucosyl transferase 13

Fv

fragment variable

GalT

β1,4-galactosyltransferase

GALT1

β1,3-galactosyltransferase

Glc

glucose

GlcNAc

N-acetylglucosamine

GNT I

α1,3-mannosyl-glycoprotein 2β-N-acetylglucosamine transferase

GNT II

α1,6-mannosyl-glycoprotein 2β-N-acetylglucosamine transferase

GNT III

β1,4-N-acetylglucosamine transferase III

HIV

human immunodeficiency virus

Ig

immunoglobulin

IgG

class G immunoglobulin

JV

Junin virus

Man

mannose

MAPP

monoclonal antibodies produced in plants

MNS

mannosidase

Neu5Ac

N-acetylneuraminic acid

NHL

non-Hodgkin lymphoma

OST

oligosaccharyltransferase

PA

Bacillus anthracis protective antigen

P2G12

TMA 2G12 produced in tobacco plant

PVX

potato virus X

rituximab-P

plant-produced TMA rituximab

RSV

respiratory syncytial virus

scFv

single-chain variable fragment (fusion protein consisting of VL and VH connected with linker peptide)

sIgA

secretory IgA

TMA

therapeutic monoclonal antibodies produced in animal cells

TMV

tobacco mosaic virus

trastuzumab-P

plant-produced TMA trastuzumab

VH

variable region of Ig heavy chain

VL

variable region of Ig light chain

WNV

West Nile virus

2G12

TMA interacting with GP120 HIV

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Niwa, R., and Satoh, M. (2015) The current status and prospects of antibody engineering for therapeutic use: focus on glycoengineering technology, J. Pharm. Sci., 104, 930–941.PubMedCrossRefGoogle Scholar
  2. 2.
    Arntzen, C. (2015) Plant-made pharmaceuticals: from “Edible Vaccines” to Ebola therapeutics, Plant Biotechnol. J., 13, 1013–1016.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Holtz, B. R., Berquist, B. R., Bennett, L. D., Kommineni, V. J. M., Munigunti, R. K., White, E. L., Wilkerson, D. C., Wong, K.-Y. I., Ly, L. H., and Marcel, S. (2015) Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals, Plant Biotechnol. J., 13, 1180–1190.PubMedCrossRefGoogle Scholar
  4. 4.
    Whaley, K. J., Morton, J., Hume, S., Hiatt, E., Bratcher, B., Klimyuk, V., Hiatt, A., Pauly, M., and Zeitlin, L. (2014) Emerging antibody-based products, Curr. Top. Microbiol. Immunol., 375, 107–126.PubMedGoogle Scholar
  5. 5.
    Stoger, E., Sack, M., Nicholson, L., Fischer, R., and Christou, P. (2005) Recent progress in plantibody technology, Curr. Pharm. Des., 11, 2439–2457.PubMedCrossRefGoogle Scholar
  6. 6.
    Hiatt, A., Cafferkey, R., and Bowdish, K. (1989) Production of antibodies in transgenic plants, Nature, 342, 76–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Ma, J. K., Hikmat, B. Y., Wycoff, K., Vine, N. D., Chargelegue, D., Yu, L., Hein, M. B., and Lehner, T. (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans, Nat. Med., 4, 601–606.PubMedCrossRefGoogle Scholar
  8. 8.
    De Muynck, B., Navarre, C., and Boutry, M. (2010) Production of antibodies in plants: status after twenty years, Plant Biotechnol. J., 8, 529–563.PubMedCrossRefGoogle Scholar
  9. 9.
    Gleba, Y. Y., Tuse, D., and Giritch, A. (2014) Plant viral vectors for delivery by Agrobacterium, Curr. Top. Microbiol. Immunol., 375, 155–192.PubMedGoogle Scholar
  10. 10.
    Komarova, T. V., Baschieri, S., Donini, M., Marusic, C., Benvenuto, E., and Dorokhov, Y. L. (2010) Transient expression systems for plant-derived biopharmaceuticals, Expert Rev. Vaccines, 9, 859–876.PubMedCrossRefGoogle Scholar
  11. 11.
    Hiatt, A., Whaley, K. J., and Zeitlin, L. (2014) Plantderived monoclonal antibodies for prevention and treatment of infectious disease, Microbiol. Spectr., 2, AID-0004-2012.Google Scholar
  12. 12.
    Takeyama, N., Kiyono, H., and Yuki, Y. (2015) Plant-based vaccines for animals and humans: recent advances in technology and clinical trials, Ther. Adv. Vaccines, 3, 139–154.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tschofen, M., Knopp, D., Hood, E., and Stoger, E. (2016) Plant molecular farming: much more than medicines, Annu. Rev. Anal. Chem. (Palo Alto Calif.), 9, 271–294.CrossRefGoogle Scholar
  14. 14.
    Chilton, M.-D. (2001) Agrobacterium. A memoir, Plant Physiol., 125, 9–14.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Marton, L., Wullems, G. J., Molendijk, L., and Schilperoort, R. A. (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens, Nature, 277, 129–131.CrossRefGoogle Scholar
  16. 16.
    Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells, Nature, 327, 70–73.CrossRefGoogle Scholar
  17. 17.
    De Muynck, B., Navarre, C., and Boutry, M. (2010) Production of antibodies in plants: status after twenty years, Plant Biotechnol. J., 8, 529–563.PubMedCrossRefGoogle Scholar
  18. 18.
    De Wilde, C., De Neve, M., De Rycke, R., Bruyns, A. M., De Jaeger, G., Van Montagu, M., Depicker, A., and Engler, G. (1996) Intact antigen-binding MAK33 antibody and Fab fragment accumulate in intercellular spaces of Arabidopsis thaliana, Plant Sci., 114, 233–241.CrossRefGoogle Scholar
  19. 19.
    Ma, J. K., Hiatt, A., Hein, M., Vine, N. D., Wang, F., Stabila, P., Van Dolleweerd, C., Mostov, K., and Lehner, T. (1995) Generation and assembly of secretory antibodies in plants, Science, 268, 716–719.PubMedCrossRefGoogle Scholar
  20. 20.
    Stoger, E., Fischer, R., Moloney, M., and Ma, J. K.-C. (2014) Plant molecular pharming for the treatment of chronic and infectious diseases, Annu. Rev. Plant Biol., 65, 743–768.PubMedCrossRefGoogle Scholar
  21. 21.
    Vamvaka, E., Twyman, R. M., Murad, A. M., Melnik, S., Teh, A. Y.-H., Arcalis, E., Altmann, F., Stoger, E., Rech, E., Ma, J. K. C., Christou, P., and Capell, T. (2016) Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12, Plant Biotechnol. J., 14, 97–108.PubMedCrossRefGoogle Scholar
  22. 22.
    Bock, R. (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology, Annu. Rev. Plant Biol., 66, 211–241.PubMedCrossRefGoogle Scholar
  23. 23.
    Yusibov, V., Kushnir, N., and Streatfield, S. J. (2016) Antibody production in plants and green algae, Annu. Rev. Plant Biol., 67, 669–701.PubMedCrossRefGoogle Scholar
  24. 24.
    Rasala, B. A., and Mayfield, S. P. (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses, Photosynth. Res., 123, 227–239.PubMedCrossRefGoogle Scholar
  25. 25.
    Goodin, M. M., Zaitlin, D., Naidu, R. A., and Lommel, S. A. (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions, Mol. Plant Microbe Interact., 21, 1015–1026.PubMedCrossRefGoogle Scholar
  26. 26.
    Bevan, M. (1984) Binary Agrobacterium vectors for plant transformation, Nucleic Acids Res., 12, 8711–8721.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lam, E. (1994) Analysis of tissue-specific elements in the CaMV 35S promoter, Results Probl. Cell Differ., 20, 181–196.PubMedCrossRefGoogle Scholar
  28. 28.
    Giritch, A., Marillonnet, S., Engler, C., Van Eldik, G., Botterman, J., Klimyuk, V., and Gleba, Y. (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors, Proc. Natl. Acad. Sci. USA, 103, 14701–14706.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Garabagi, F., McLean, M. D., and Hall, J. C. (2012) Transient and stable expression of antibodies in Nicotiana species, Methods Mol. Biol., 907, 389–408.PubMedCrossRefGoogle Scholar
  30. 30.
    Komarova, T. V., Kosorukov, V. S., Frolova, O. Y., Petrunia, I. V., Skrypnik, K. A., Gleba, Y. Y., and Dorokhov, Y. L. (2011) Plant-made trastuzumab (Herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth, PLoS One, 6, e17541.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hamorsky, K. T., Grooms-Williams, T. W., Husk, A. S., Bennett, L. J., Palmer, K. E., and Matoba, N. (2013) Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides, Antimicrob. Agents Chemother., 57, 2076–2086.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y. (2005) Systemic Agrobacterium tumefaciensmediated transfection of viral replicons for efficient transient expression in plants, Nat. Biotechnol., 23, 718–723.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang, B., Rapolu, M., Huang, L., and Su, W. W. (2011) Coordinate expression of multiple proteins in plant cells by exploiting endogenous kex2p-like protease activity, Plant Biotechnol. J., 9, 970–981.PubMedCrossRefGoogle Scholar
  34. 34.
    Sainsbury, F., Lavoie, P.-O., D’ Aoust, M.-A., Vezina, L.-P., and Lomonossoff, G. P. (2008) Expression of multiple proteins using full-length and deleted versions of cowpea mosaic virus RNA-2, Plant Biotechnol. J., 6, 82–92.PubMedGoogle Scholar
  35. 35.
    Diamos, A. G., Rosenthal, S. H., and Mason, H. S. (2016) 5'and 3'-untranslated regions strongly enhance performance of gemini viral replicons in Nicotiana benthamiana leaves, Front. Plant Sci., 7, 200.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Huang, Z., Phoolcharoen, W., Lai, H., Piensook, K., Cardineau, G., Zeitlin, L., Whaley, K. J., Arntzen, C. J., Mason, H. S., and Chen, Q. (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system, Biotechnol. Bioeng., 106, 9–17.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Esfandiari, N., Arzanani, M. K., Soleimani, M., KohiHabibi, M., and Svendsen, W. E. (2016) A new application of plant virus nanoparticles as drug delivery in breast cancer, Tumour Biol., 37, 1229–1236.PubMedCrossRefGoogle Scholar
  38. 38.
    Hehle, V. K., Paul, M. J., Roberts, V. A., Van Dolleweerd, C. J., and Ma, J. K.-C. (2016) Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants, FASEB J., 30, 1590–1598.PubMedCrossRefGoogle Scholar
  39. 39.
    Xu, C., and Ng, D. T. W. (2015) Glycosylation-directed quality control of protein folding, Nat. Rev. Mol. Cell Biol., 16, 742–752.PubMedCrossRefGoogle Scholar
  40. 40.
    Nguema-Ona, E., Vicre-Gibouin, M., Gotte, M., Plancot, B., Lerouge, P., Bardor, M., and Driouich, A. (2014) Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function, Front. Plant Sci., 5, 499.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Olszewski, N. E., West, C. M., Sassi, S. O., and Hartweck, L. M. (2010) O-GlcNAc protein modification in plants: evolution and function, Biochim. Biophys. Acta, 1800, 49–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Strasser, R. (2014) Biological significance of complex Nglycans in plants and their impact on plant physiology, Front. Plant Sci., 5, 363.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Strasser, R. (2016) Plant protein glycosylation, Glycobiology, pii: cww023.Google Scholar
  44. 44.
    Strasser, R., Altmann, F., and Steinkellner, H. (2014) Controlled glycosylation of plant-produced recombinant proteins, Curr. Opin. Biotechnol., 30, 95–100.PubMedCrossRefGoogle Scholar
  45. 45.
    Beck, A., Wagner-Rousset, E., Ayoub, D., Van Dorsselaer, A., and Sanglier-Cianferani, S. (2013) Characterization of therapeutic antibodies and related products, Anal. Chem., 85, 715–736.PubMedCrossRefGoogle Scholar
  46. 46.
    Gomord, V., Fitchette, A.-C., Menu-Bouaouiche, L., Saint- Jore-Dupas, C., Plasson, C., Michaud, D., and Faye, L. (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production, Plant Biotechnol. J., 8, 564–587.PubMedCrossRefGoogle Scholar
  47. 47.
    Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A. C., Gomord, V., and Faye, L. (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends, Plant Mol. Biol., 38, 31–48.PubMedCrossRefGoogle Scholar
  48. 48.
    Veit, C., Vavra, U., and Strasser, R. (2015) N-glycosylation and plant cell growth, Methods Mol. Biol., 1242, 183–194.PubMedCrossRefGoogle Scholar
  49. 49.
    Koiwa, H., Li, F., McCully, M. G., Mendoza, I., Koizumi, N., Manabe, Y., Nakagawa, Y., Zhu, J., Rus, A., Pardo, J. M., Bressan, R. A., and Hasegawa, P. M. (2003) The STT3a subunit isoform of the Arabidopsis oligosaccharyl transferase controls adaptive responses to salt/osmotic stress, Plant Cell, 15, 2273–2284.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lannoo, N., and Van Damme, E. J. M. (2015) Review/Nglycans: the making of a varied toolbox, Plant Sci., 239, 67–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Henquet, M., Lehle, L., Schreuder, M., Rouwendal, G., Molthoff, J., Helsper, J., van Der Krol, S., and Bosch, D. (2008) Identification of the gene encoding the alpha1,3mannosyltransferase (ALG3) in Arabidopsis and characterization of downstream N-glycan processing, Plant Cell, 20, 1652–1664.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hong, Z., Jin, H., Fitchette, A.-C., Xia, Y., Monk, A. M., Faye, L., and Li, J. (2009) Mutations of an alpha1,6 mannosyl transferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis, Plant Cell, 21, 3792–3802.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hong, Z., Kajiura, H., Su, W., Jin, H., Kimura, A., Fujiyama, K., and Li, J. (2012) Evolutionarily conserved glycan signal to degrade aberrant brassinosteroid receptors in Arabidopsis, Proc. Natl. Acad. Sci. USA, 109, 11437–11442.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang, M., Henquet, M., Chen, Z., Zhang, H., Zhang, Y., Ren, X., van der Krol, S., Gonneau, M., Bosch, D., and Gong, Z. (2009) LEW3, encoding a putative alpha-1,2mannosyltransferase (ALG11) in N-linked glycoprotein, plays vital roles in cell-wall biosynthesis and the abiotic stress response in Arabidopsis thaliana, Plant J. Cell Mol. Biol., 60, 983–999.CrossRefGoogle Scholar
  55. 55.
    Farid, A., Pabst, M., Schoberer, J., Altmann, F., Glossl, J., and Strasser, R. (2011) Arabidopsis thaliana alpha1,2-glucosyltransferase (ALG10) is required for efficient N-glycosylation and leaf growth, Plant J. Cell Mol. Biol., 68, 314–325.CrossRefGoogle Scholar
  56. 56.
    Liebminger, E., Huttner, S., Vavra, U., Fischl, R., Schoberer, J., Grass, J., Blaukopf, C., Seifert, G. J., Altmann, F., Mach, L., and Strasser, R. (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana, Plant Cell, 21, 3850–3867.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fanata, W. I. D., Lee, K. H., Son, B. H., Yoo, J. Y., Harmoko, R., Ko, K. S., Ramasamy, N. K., Kim, K. H., Oh, D.-B., Jung, H. S., Kim, J.-Y., Lee, S. Y., and Lee, K. O. (2013) N-glycan maturation is crucial for cytokininmediated development and cellulose synthesis in Oryza sativa, Plant J. Cell Mol. Biol., 73, 966–979.CrossRefGoogle Scholar
  58. 58.
    Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., and Etzler, M. E. (2009) in Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  59. 59.
    Strasser, R., Altmann, F., Mach, L., Glossl, J., and Steinkellner, H. (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose, FEBS Lett., 561, 132–136.PubMedCrossRefGoogle Scholar
  60. 60.
    Leonard, R., Kolarich, D., Paschinger, K., Altmann, F., and Wilson, I. B. (2004) A genetic and structural analysis of the N-glycosylation capabilities, Plant Mol. Biol., 55, 631–644.PubMedCrossRefGoogle Scholar
  61. 61.
    Dicker, M., Tschofen, M., Maresch, D., Konig, J., Juarez, P., Orzaez, D., Altmann, F., Steinkellner, H., and Strasser, R. (2016) Transient glyco-engineering to produce recombinant IgA1 with defined Nand O-glycans in plants, Front. Plant Sci., 7, 18.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Dingjan, T., Spendlove, I., Durrant, L. G., Scott, A. M., Yuriev, E., and Ramsland, P. A. (2015) Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies, Mol. Immunol., 67, 75–88.PubMedCrossRefGoogle Scholar
  63. 63.
    Strasser, R., Bondili, J. S., Vavra, U., Schoberer, J., Svoboda, B., Glossl, J., Leonard, R., Stadlmann, J., Altmann, F., Steinkellner, H., and Mach, L. (2007) A unique beta1,3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana, Plant Cell, 19, 2278–2292.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Roman, V. R. G., Murray, J. C., and Weiner, L. M. (2013) in Antibody Fc: Chap. 1. Antibody-Dependent Cellular Cytotoxicity, Academic Press.Google Scholar
  65. 65.
    Lindorfer, M. A., Kohl, J., and Taylor, R. P. (2014) in Chap. 3. Interactions Between the Complement System and Fc? Receptors A2 (Nimmerjahn, F., and Ackerman, M. E., eds.) Academic Press, Boston, pp. 49–74.Google Scholar
  66. 66.
    Gul, N., and Van Egmond, M. (2015) Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer, Cancer Res., 75, 5008–5013.PubMedCrossRefGoogle Scholar
  67. 67.
    Nimmerjahn, F. (2014) in Chapter 11. Activating and Inhibitory FcγRs in Autoimmune Disorders, Academic Press, Boston, pp. 195–215.Google Scholar
  68. 68.
    Strasser, R., Bondili, J. S., Schoberer, J., Svoboda, B., Liebminger, E., Glossl, J., Altmann, F., Steinkellner, H., and Mach, L. (2007) Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetylhexosaminidases, Plant Physiol., 145, 5–16.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Strasser, R., Stadlmann, J., Schahs, M., Stiegler, G., Quendler, H., Mach, L., Glossl, J., Weterings, K., Pabst, M., and Steinkellner, H. (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure, Plant Biotechnol. J., 6, 392–402.PubMedCrossRefGoogle Scholar
  70. 70.
    Strasser, R., Castilho, A., Stadlmann, J., Kunert, R., Quendler, H., Gattinger, P., Jez, J., Rademacher, T., Altmann, F., Mach, L., and Steinkellner, H. (2009) Improved virus neutralization by plant-produced antiHIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile, J. Biol. Chem., 284, 20479–20485.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Strasser, R., Stadlmann, J., Schahs, M., Stiegler, G., Quendler, H., Mach, L., Glossl, J., Weterings, K., Pabst, M., and Steinkellner, H. (2008) Generation of glycoengineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous humanlike N-glycan structure, Plant Biotechnol. J., 6, 392–402.PubMedCrossRefGoogle Scholar
  72. 72.
    Bardor, M., Faveeuw, C., Fitchette, A.-C., Gilbert, D., Galas, L., Trottein, F., Faye, L., and Lerouge, P. (2003) Immunoreactivity in mammals of two typical plant glycoepitopes, core a(1,3)-fucose and core xylose, Glycobiology, 13, 427–434.PubMedCrossRefGoogle Scholar
  73. 73.
    Chargelegue, D., Vine, N. D., Van Dolleweerd, C. J., Drake, P. M., and Ma, J. K. (2000) A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice, Transgenic Res., 9, 187–194.PubMedCrossRefGoogle Scholar
  74. 74.
    Jin, C., Altmann, F., Strasser, R., Mach, L., Schahs, M., Kunert, R., Rademacher, T., Glossl, J., and Steinkellner, H. (2008) A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits, Glycobiology, 18, 235–241.PubMedCrossRefGoogle Scholar
  75. 75.
    Tuse, D., Ku, N., Bendandi, M., Becerra, C., Collins, R., Langford, N., Sancho, S. I., Lopez-Diaz de Cerio, A., Pastor, F., Kandzia, R., Thieme, F., Jarczowski, F., Krause, D., Ma, J. K.-C., Pandya, S., Klimyuk, V., Gleba, Y., and Butler-Ransohoff, J. E. (2015) Clinical safety and immunogenicity of tumor-targeted, plant-made Id-KLH conjugate vaccines for follicular lymphoma, BioMed Res. Int., 648143.Google Scholar
  76. 76.
    Bosch, D., Castilho, A., Loos, A., Schots, A., and Steinkellner, H. (2013) N-glycosylation of plant-produced recombinant proteins, Curr. Pharm. Des., 19, 5503–5512.PubMedCrossRefGoogle Scholar
  77. 77.
    Ferrara, C., Brunker, P., Suter, T., Moser, S., Puntener, U., and Umana, P. (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II,Biotechnol. Bioeng., 93, 851–861.PubMedGoogle Scholar
  78. 78.
    Jefferis, R. (2009) Glycosylation as a strategy to improve antibody-based therapeutics, Nat. Rev. Drug Discov., 8, 226–234.PubMedCrossRefGoogle Scholar
  79. 79.
    Zeitlin, L., Pettitt, J., Scully, C., Bohorova, N., Kim, D., Pauly, M., Hiatt, A., Ngo, L., Steinkellner, H., Whaley, K. J., and Olinger, G. G. (2011) Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant, Proc. Natl. Acad. Sci. USA, 108, 20690–20694.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sriraman, R., Bardor, M., Sack, M., Vaquero, C., Faye, L., Fischer, R., Finnern, R., and Lerouge, P. (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-alpha(1,3)-fucose residues, Plant Biotechnol. J., 2, 279–287.PubMedCrossRefGoogle Scholar
  81. 81.
    Triguero, A., Cabrera, G., Cremata, J. A., Yuen, C.-T., Wheeler, J., and Ramirez, N. I. (2005) Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly highmannose-type N-glycans, Plant Biotechnol. J., 3, 449–457.PubMedCrossRefGoogle Scholar
  82. 82.
    Petruccelli, S., Otegui, M. S., Lareu, F., Tran Dinh, O., Fitchette, A.-C., Circosta, A., Rumbo, M., Bardor, M., Carcamo, R., Gomord, V., and Beachy, R. N. (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds, Plant Biotechnol. J., 4, 511–527.PubMedGoogle Scholar
  83. 83.
    Loos, A., and Castilho, A. (2015) Transient glyco-engineering of N. benthamiana aiming at the synthesis of multiantennary sialylated proteins, Methods Mol. Biol., 1321, 233–248.PubMedCrossRefGoogle Scholar
  84. 84.
    Nagels, B., Van Damme, E. J. M., Pabst, M., Callewaert, N., and Weterings, K. (2011) Production of complex multiantennary N-glycans in Nicotiana benthamiana plants, Plant Physiol., 155, 1103–1112.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Forthal, D. N., Gach, J. S., Landucci, G., Jez, J., Strasser, R., Kunert, R., and Steinkellner, H. (2010) Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12, J. Immunol., 185, 6876–6882.PubMedCrossRefGoogle Scholar
  86. 86.
    Castilho, A., Gruber, C., Thader, A., Oostenbrink, C., Pechlaner, M., Steinkellner, H., and Altmann, F. (2015) Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation, mAbs, 7, 863–870.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Matsuo, K., Kagaya, U., Itchoda, N., Tabayashi, N., and Matsumura, T. (2014) Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes, J. Biosci. Bioeng., 118, 448–454.PubMedCrossRefGoogle Scholar
  88. 88.
    Frey, A. D., Karg, S. R., and Kallio, P. T. (2009) Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation, Plant Biotechnol. J., 7, 33–48.PubMedCrossRefGoogle Scholar
  89. 89.
    Rouwendal, G. J. A., Wuhrer, M., Florack, D. E. A., Koeleman, C. A. M., Deelder, A. M., Bakker, H., Stoopen, G. M., van Die, I., Helsper, J. P. F. G., Hokke, C. H., and Bosch, D. (2007) Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III, Glycobiology, 17, 334–344.PubMedCrossRefGoogle Scholar
  90. 90.
    Houde, D., Peng, Y., Berkowitz, S. A., and Engen, J. R. (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding, Mol. Cell. Proteomics, 9, 1716–1728.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Mimura, Y., Kelly, R. M., Unwin, L., Albrecht, S., Jefferis, R., Goodall, M., Mizukami, Y., Mimura-Kimura, Y., Matsumoto, T., Ueoka, H., and Rudd, P. M. (2016) Enhanced sialylation of a human chimeric IgG1 variant produced in human and rodent cell lines, J. Immunol. Methods, 428, 30–36.PubMedCrossRefGoogle Scholar
  92. 92.
    Zeleny, R., Kolarich, D., Strasser, R., and Altmann, F. (2006) Sialic acid concentrations in plants are in the range of inadvertent contamination, Planta, 224, 222–227.PubMedCrossRefGoogle Scholar
  93. 93.
    Castilho, A., Strasser, R., Stadlmann, J., Grass, J., Jez, J., Gattinger, P., Kunert, R., Quendler, H., Pabst, M., Leonard, R., Altmann, F., and Steinkellner, H. (2010) In planta protein sialylation through overexpression of the respective mammalian pathway, J. Biol. Chem., 285, 15923–15930.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Jez, J., Castilho, A., Grass, J., Vorauer-Uhl, K., Sterovsky, T., Altmann, F., and Steinkellner, H. (2013) Expression of functionally active sialylated human erythropoietin in plants, Biotechnol. J., 8, 371–382.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Patel, D., Guo, X., Ng, S., Melchior, M., Balderes, P., Burtrum, D., Persaud, K., Luna, X., Ludwig, D. L., and Kang, X. (2010) IgG isotype, glycosylation, and EGFR expression determine the induction of antibody-dependent cellular cytotoxicity in vitro by cetuximab, Hum. Antibodies, 19, 89–99.PubMedGoogle Scholar
  96. 96.
    Jarczowski, F., Kandzia, R., Thieme, F., Klimyuk, V., and Gleba, Y. (2016) Methods of modulating N-glycosylation site occupancy of plant-produced glycoproteins and recombinant glycoproteins, United States Patent Application No. 20160115498.Google Scholar
  97. 97.
    Engelman, A., and Cherepanov, P. (2012) The structural biology of HIV-1: mechanistic and therapeutic insights, Nat. Rev. Microbiol., 10, 279–290.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Morris, G. C., Wiggins, R. C., Woodhall, S. C., Bland, J. M., Taylor, C. R., Jespers, V., Vcelar, B. A., and Lacey, C. J. (2014) MABGEL 1: first phase 1 trial of the anti-HIV-1 monoclonal antibodies 2F5, 4E10 and 2G12 as a vaginal microbicide, PLoS One, 9, e116153.PubMedCrossRefGoogle Scholar
  99. 99.
    Rademacher, T., Sack, M., Arcalis, E., Stadlmann, J., Balzer, S., Altmann, F., Quendler, H., Stiegler, G., Kunert, R., Fischer, R., and Stoger, E. (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans, Plant Biotechnol. J., 6, 189–201.PubMedCrossRefGoogle Scholar
  100. 100.
    Schahs, M., Strasser, R., Stadlmann, J., Kunert, R., Rademacher, T., and Steinkellner, H. (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern, Plant Biotechnol. J., 5, 657–663.PubMedCrossRefGoogle Scholar
  101. 101.
    Ma, J. K.-C., Drossard, J., Lewis, D., Altmann, F., Boyle, J., Christou, P., Cole, T., Dale, P., Van Dolleweerd, C. J., Isitt, V., Katinger, D., Lobedan, M., Mertens, H., Paul, M. J., Rademacher, T., Sack, M., Hundleby, P. A. C., Stiegler, G., Stoger, E., Twyman, R. M., Vcelar, B., and Fischer, R. (2015) Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants, Plant Biotechnol. J., 13, 1106–1120.PubMedCrossRefGoogle Scholar
  102. 102.
    Sainsbury, F., Sack, M., Stadlmann, J., Quendler, H., Fischer, R., and Lomonossoff, G. P. (2010) Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody, PLoS One, 5, e13976.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sainsbury, F., Thuenemann, E. C., and Lomonossoff, G. P. (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants, Plant Biotechnol. J., 7, 682–693.PubMedCrossRefGoogle Scholar
  104. 104.
    Paul, M., Reljic, R., Klein, K., Drake, P. M. W., van Dolleweerd, C., Pabst, M., Windwarder, M., Arcalis, E., Stoger, E., Altmann, F., Cosgrove, C., Bartolf, A., Baden, S., and Ma, J. K.-C. (2014) Characterization of a plantproduced recombinant human secretory IgA with broad neutralizing activity against HIV, mAbs, 6, 1585–1597.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Olinger, G. G., Pettitt, J., Kim, D., Working, C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S. D., Johnson, A. K., Morton, J., Pauly, M., Whaley, K. J., Lear, C. M., Biggins, J. E., Scully, C., Hensley, L., and Zeitlin, L. (2012) Delayed treatment of Ebola virus infection with plantderived monoclonal antibodies provides protection in rhesus macaques, Proc. Natl. Acad. Sci. USA, 109, 18030–18035.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Zeitlin, L., Pettitt, J., Scully, C., Bohorova, N., Kim, D., Pauly, M., Hiatt, A., Ngo, L., Steinkellner, H., Whaley, K. J., and Olinger, G. G. (2011) Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant, Proc. Natl. Acad. Sci. USA, 108, 20690–20694.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Qiu, X., Alimonti, J. B., Melito, P. L., Fernando, L., Stroher, U., and Jones, S. M. (2011) Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies, Clin. Immunol., 141, 218–227.PubMedCrossRefGoogle Scholar
  108. 108.
    Qiu, X., Audet, J., Wong, G., Pillet, S., Bello, A., Cabral, T., Strong, J. E., Plummer, F., Corbett, C. R., Alimonti, J. B., and Kobinger, G. P. (2012) Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies, Sci. Transl. Med., 4, 138ra81.Google Scholar
  109. 109.
    Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J. B., Fausther-Bovendo, H., Wei, H., Aviles, J., Hiatt, E., Johnson, A., Morton, J., Swope, K., Bohorov, O., Bohorova, N., Goodman, C., Kim, D., Pauly, M. H., Velasco, J., Pettitt, J., Olinger, G. G., Whaley, K., Xu, B., Strong, J. E., Zeitlin, L., and Kobinger, G. P. (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMAPP, Nature, 514, 47–53.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Lyon, G. M., Mehta, A. K., Varkey, J. B., Brantly, K., Plyler, L., McElroy, A. K., Kraft, C. S., Towner, J. S., Spiropoulou, C., Stroher, U., Uyeki, T. M., Ribner, B. S., and Emory Serious Communicable Diseases Unit (2014) Clinical care of two patients with Ebola virus disease in the United States, N. Engl. J. Med., 371, 2402–2409.PubMedCrossRefGoogle Scholar
  111. 111.
    McCarthy, M. (2014) US signs contract with ZMAPP maker to accelerate development of the Ebola drug, BMJ, 349, g5488.PubMedCrossRefGoogle Scholar
  112. 112.
    Phoolcharoen, W., Bhoo, S. H., Lai, H., Ma, J., Arntzen, C. J., Chen, Q., and Mason, H. S. (2011) Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana, Plant Biotechnol. J., 9, 807–816.PubMedCrossRefGoogle Scholar
  113. 113.
    Enria, D. A., Briggiler, A. M., and Sanchez, Z. (2008) Treatment of Argentine hemorrhagic fever, Antiviral Res., 78, 132–139.PubMedCrossRefGoogle Scholar
  114. 114.
    Sanchez, A., Pifat, D. Y., Kenyon, R. H., Peters, C. J., McCormick, J. B., and Kiley, M. P. (1989) Junin virus monoclonal antibodies: characterization and cross-reactivity with other arenaviruses, J. Gen. Virol., 70 (Pt. 5), 1125–1132.PubMedCrossRefGoogle Scholar
  115. 115.
    Zeitlin, L., Geisbert, J. B., Deer, D. J., Fenton, K. A., Bohorov, O., Bohorova, N., Goodman, C., Kim, D., Hiatt, A., Pauly, M. H., Velasco, J., Whaley, K. J., Altmann, F., Gruber, C., Steinkellner, H., Honko, A. N., Kuehne, A. I., Aman, M. J., Sahandi, S., Enterlein, S., Zhan, X., Enria, D., and Geisbert, T. W. (2016) Monoclonal antibody therapy for Junin virus infection, Proc. Natl. Acad. Sci. USA, 113, 4458–4463.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zeitlin, L., Bohorov, O., Bohorova, N., Hiatt, A., Kim, D. H., Pauly, M. H., Velasco, J., Whaley, K. J., Barnard, D. L., Bates, J. T., Crowe, J. E., Piedra, P. A., and Gilbert, B. E. (2013) Prophylactic and therapeutic testing of Nicotiana-derived RSV-neutralizing human monoclonal antibodies in the cotton rat model, mAbs, 5, 263–269.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hiatt, A., Bohorova, N., Bohorov, O., Goodman, C., Kim, D., Pauly, M. H., Velasco, J., Whaley, K. J., Piedra, P. A., Gilbert, B. E., and Zeitlin, L. (2014) Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy, Proc. Natl. Acad. Sci. USA, 111, 5992–5997.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Oliphant, T., Engle, M., Nybakken, G. E., Doane, C., Johnson, S., Huang, L., Gorlatov, S., Mehlhop, E., Marri, A., Chung, K. M., Ebel, G. D., Kramer, L. D., Fremont, D. H., and Diamond, M. S. (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus, Nat. Med., 11, 522–530.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lai, H., Engle, M., Fuchs, A., Keller, T., Johnson, S., Gorlatov, S., Diamond, M. S., and Chen, Q. (2010) Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice, Proc. Natl. Acad. Sci. USA, 107, 2419–2424.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    He, J., Lai, H., Engle, M., Gorlatov, S., Gruber, C., Steinkellner, H., Diamond, M. S., and Chen, Q. (2014) Generation and analysis of novel plant-derived antibodybased therapeutic molecules against West Nile virus, PLoS One, 9, e93541.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Lai, H., He, J., Hurtado, J., Stahnke, J., Fuchs, A., Mehlhop, E., Gorlatov, S., Loos, A., Diamond, M. S., and Chen, Q. (2014) Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants, Plant Biotechnol. J., 12, 1098–1107.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Hull, A. K., Criscuolo, C. J., Mett, V., Groen, H., Steeman, W., Westra, H., Chapman, G., Legutki, B., Baillie, L., and Yusibov, V. (2005) Human-derived, plantproduced monoclonal antibody for the treatment of anthrax, Vaccine, 23, 2082–2086.PubMedCrossRefGoogle Scholar
  123. 123.
    Mett, V., Chichester, J. A., Stewart, M. L., Musiychuk, K., Bi, H., Reifsnyder, C. J., Hull, A. K., Albrecht, M. T., Goldman, S., Baillie, L. W. J., and Yusibov, V. (2011) A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human primates from B. anthracis spore challenge, Hum. Vaccin., 7 (Suppl.), 183–190.PubMedCrossRefGoogle Scholar
  124. 124.
    Almquist, K. C., McLean, M. D., Niu, Y., Byrne, G., Olea-Popelka, F. C., Murrant, C., Barclay, J., and Hall, J. C. (2006) Expression of an anti-botulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco, Vaccine, 24, 2079–2086.PubMedCrossRefGoogle Scholar
  125. 125.
    Evans, S. S., and Clemmons, A. B. (2015) Obinutuzumab: a novel anti-CD20 monoclonal antibody for chronic lymphocytic leukemia, J. Adv. Pract. Oncol., 6, 370–374.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Grohs, B. M., Niu, Y., Veldhuis, L. J., Trabelsi, S., Garabagi, F., Hassell, J. A., McLean, M. D., and Hall, J. C. (2010) Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells, J. Agric. Food Chem., 58, 10056–10063.PubMedCrossRefGoogle Scholar
  127. 127.
    Kosorukov, V. S., Kosobokova, E. N., Pinyugina, M. V., Sevost’yanova, M. A., Shcherbakov, A. I., Andronova, N. V., Solomko, E. Sh., Sheshukova, E. V., Treshchalina, E. M., and Dorokhov, Yu. L. (2015) Biological activity of recombinant antibodies against HER2 receptor obtained from plants, Ross. Bioter. Zh., 14, 105–112.Google Scholar
  128. 128.
    McCormick, A. A., Kumagai, M. H., Hanley, K., Turpen, T. H., Hakim, I., Grill, L. K., Tuse, D., Levy, S., and Levy, R. (1999) Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants, Proc. Natl. Acad. Sci. USA, 96, 703–708.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    McCormick, A. A., Corbo, T. A., Wykoff-Clary, S., Nguyen, L. V., Smith, M. L., Palmer, K. E., and Pogue, G. P. (2006) TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models, Vaccine, 24, 6414–6423.PubMedCrossRefGoogle Scholar
  130. 130.
    Bendandi, M., Marillonnet, S., Kandzia, R., Thieme, F., Nickstadt, A., Herz, S., Frode, R., Inoges, S., Lopez-Diaz de Cerio, A., Soria, E., Villanueva, H., Vancanneyt, G., McCormick, A., Tuse, D., Lenz, J., Butler-Ransohoff, J.-E., Klimyuk, V., and Gleba, Y. (2010) Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma, Ann. Oncol., 21, 2420–2427.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. V. Sheshukova
    • 1
  • T. V. Komarova
    • 1
    • 2
  • Y. L. Dorokhov
    • 1
    • 2
    Email author
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations