Biochemistry (Moscow)

, Volume 81, Issue 10, pp 1066–1080 | Cite as

Iron-sulfur clusters in mitochondrial metabolism: Multifaceted roles of a simple cofactor



Iron-sulfur metabolism is essential for cellular function and is a key process in mitochondria. In this review, we focus on the structure and assembly of mitochondrial iron-sulfur clusters and their roles in various metabolic processes that occur in mitochondria. Iron-sulfur clusters are crucial in mitochondrial respiration, in which they are required for the assembly, stability, and function of respiratory complexes I, II, and III. They also serve important functions in the citric acid cycle, DNA metabolism, and apoptosis. Whereas the identification of iron-sulfur containing proteins and their roles in numerous aspects of cellular function has been a long-standing research area, that in mitochondria is comparatively recent, and it is likely that their roles within mitochondria have been only partially revealed. We review the status of the field and provide examples of other cellular iron-sulfur proteins to highlight their multifarious roles.

Key words

iron-sulfur clusters iron-sulfur metabolism mitochondria respiration citric acid cycle DNA metabolism 



blue native polyacrylamide gel electrophoresis


respiratory complexes I-III


cytosolic iron-sulfur protein assembly


electron transport chain




iron-responsive elements


ironregulatory protein


iron-sulfur clusters


iron-sulfur protein


mitochondrial DNA




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, H. M., Anderson, B. F., and Baker, E. N. (2003) Dealing with iron: common structural principles in proteins that transport iron and heme, Proc. Natl. Acad. Sci. USA, 100, 3579–3583.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Beinert, H., Holm, R. H., and Munck, E. (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures, Science, 277, 653–659.PubMedCrossRefGoogle Scholar
  3. 3.
    Beinert, H. (2000) Iron-sulfur proteins: ancient structures, still full of surprises, J. Biol. Inorg. Chem., 5, 2–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Kiley, P. J., and Beinert, H. (2003) The role of Fe-S proteins in sensing and regulation in bacteria, Curr. Opin. Microbiol., 6, 181–185.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson, D. C., Dean, D. R., Smith, A. D., and Johnson, M. K. (2005) Structure, function, and formation of biological iron-sulfur clusters, Annu. Rev. Biochem., 74, 247–281.PubMedCrossRefGoogle Scholar
  6. 6.
    Brzoska, K., Meczynska, S., and Kruszewski, M. (2006) Iron-sulfur cluster proteins: electron transfer and beyond, Acta Biochim. Pol., 53, 685–691.PubMedGoogle Scholar
  7. 7.
    Wiedemann, N., Urzica, E., Guiard, B., Muller, H., Lohaus, C., Meyer, H. E., Ryan, M. T., Meisinger, C., Muhlenhoff, U., Lill, R., and Pfanner, N. (2006) Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins, EMBO J., 25, 184–195.PubMedCrossRefGoogle Scholar
  8. 8.
    Shi, Y., Ghosh, M. C., Tong, W. H., and Rouault, T. A. (2009) Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis, Hum. Mol. Genet., 18, 3014–3025.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tong, W. H., and Rouault, T. (2000) Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells, EMBO J., 19, 5692–5700.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tong, W. H., and Rouault, T. A. (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian ironsulfur cluster biogenesis and iron homeostasis, Cell Metab., 3, 199–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Tamir, S., Paddock, M. L., Darash- Yahana-Baram, M., Holt, S. H., Sohn, Y. S., Agranat, L., Michaeli, D., Stofleth, J. T., Lipper, C. H., Morcos, F., Cabantchik, I. Z., Onuchic, J. N., Jennings, P. A., Mittler, R., and Nechushtai, R. (2015) Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease, Biochim. Biophys. Acta, 1853, 1294–1315.PubMedCrossRefGoogle Scholar
  12. 12.
    Fuss, J. O., Tsai, C. L., Ishida, J. P., and Tainer, J. A. (2015) Emerging critical roles of Fe-S clusters in DNA replication and repair, Biochim. Biophys. Acta, 1853, 1253–1271.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Stemmler, T. L., Lesuisse, E., Pain, D., and Dancis, A. (2010) Frataxin and mitochondrial Fe-S cluster biogenesis, J. Biol. Chem., 285, 26737–26743.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bridwell-Rabb, J., Fox, N. G., Tsai, C. L., Winn, A. M., and Barondeau, D. P. (2014) Human frataxin activates FeS cluster biosynthesis by facilitating sulfur transfer chemistry, Biochemistry, 53, 4904–4913.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rouault, T. A., and Tong, W. H. (2005) Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis, Nat. Rev. Mol. Cell Biol., 6, 345–351.PubMedCrossRefGoogle Scholar
  16. 16.
    Lill, R., and Muhlenhoff, U. (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms, Annu. Rev. Cell Dev. Biol., 22, 457–486.PubMedCrossRefGoogle Scholar
  17. 17.
    Lill, R., Dutkiewicz, R., Elsasser, H. P., Hausmann, A., Netz, D. J., Pierik, A. J., Stehling, O., Urzica, E., and Muhlenhoff, U. (2006) Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes, Biochim. Biophys. Acta, 1763, 652–667.PubMedCrossRefGoogle Scholar
  18. 18.
    Napier, I., Ponka, P., and Richardson, D. R. (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease, Blood, 105, 1867–1874.PubMedCrossRefGoogle Scholar
  19. 19.
    Rouault, T. A. (2012) Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease, Dis. Models Mech., 5, 155–164.CrossRefGoogle Scholar
  20. 20.
    Beilschmidt, L. K., and Puccio, H. M. (2014) Mammalian Fe-S cluster biogenesis and its implication in disease, Biochimie, 100, 48–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Maio, N., Ghezzi, D., Verrigni, D., Rizza, T., Bertini, E., Martinelli, D., Zeviani, M., Singh, A., Carrozzo, R., and Rouault, T. A. (2015) Disease-causing SDHAF1 mutations impair transfer of Fe-S clusters to SDHB, Cell Metab., 23, 292–302.PubMedCrossRefGoogle Scholar
  22. 22.
    Lill, R. (2009) Function and biogenesis of iron-sulphur proteins, Nature, 460, 831–838.PubMedCrossRefGoogle Scholar
  23. 23.
    Paul, V. D., and Lill, R. (2015) Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability, Biochim. Biophys. Acta, 1853, 1528–1539.PubMedCrossRefGoogle Scholar
  24. 24.
    Wiley, S. E., Paddock, M. L., Abresch, E. C., Gross, L., Van der Geer, P., Nechushtai, R., Murphy, A. N., Jennings, P. A., and Dixon, J. E. (2007) The outer mitochondrial membrane protein mitoNEET contains a novel redoxactive 2Fe-2S cluster, J. Biol. Chem., 282, 23745–23749.PubMedCrossRefGoogle Scholar
  25. 25.
    Leggate, E. J., Bill, E., Essigke, T., Ullmann, G. M., and Hirst, J. (2004) Formation and characterization of an allferrous Rieske cluster and stabilization of the [2Fe-2S](0) core by protonation, Proc. Natl. Acad. Sci. USA, 101, 10913–10918.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Meyer, J. (2008) Iron-sulfur protein folds, iron-sulfur chemistry, and evolution, J. Biol. Inorg. Chem., 13, 157–170.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson, M. K., and Smith, A. D. (2005) Iron-sulfur proteins, in Encyclopedia of Inorganic Chemistry (King, R. B., ed.) 2nd Edn., John Wiley & Sons, Chichester, pp. 2589–2619.Google Scholar
  28. 28.
    Ren, B., Duan, X., and Ding, H. (2009) Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster, J. Biol. Chem., 284, 4829–4835.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ding, H., Hidalgo, E., and Demple, B. (1996) The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor, J. Biol. Chem., 271, 33173–33175.PubMedCrossRefGoogle Scholar
  30. 30.
    Ramon-Garcia, S., Ng, C., Jensen, P. R., Dosanjh, M., Burian, J., Morris, R. P., Folcher, M., Eltis, L. D., Grzesiek, S., Nguyen, L., and Thompson, C. J. (2013) WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria, J. Biol. Chem., 288, 34514–34528.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jain, R., Vanamee, E. S., Dzikovski, B. G., Buku, A., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase epsilon, J. Mol. Biol., 426, 301–308.PubMedCrossRefGoogle Scholar
  32. 32.
    Netz, D. J., Stith, C. M., Stumpfig, M., Kopf, G., Vogel, D., Genau, H. M., Stodola, J. L., Lill, R., Burgers, P. M., and Pierik, A. J. (2012) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes, Nat. Chem. Biol., 8, 125–132.CrossRefGoogle Scholar
  33. 33.
    Zhang, C. (2014) Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control, Protein Cell, 5, 750–760.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Stiban, J., Farnum, G. A., Hovde, S. L., and Kaguni, L. S. (2014) The N-terminal domain of the Drosophila mitochondrial replicative DNA helicase contains an iron-sulfur cluster and binds DNA, J. Biol. Chem., 289, 24032–24042.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pokharel, S., and Campbell, J. L. (2012) Cross talk between the nuclease and helicase activities of Dna2: role of an essential iron-sulfur cluster domain, Nucleic Acids Res., 40, 7821–7830.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Frazzon, J., and Dean, D. R. (2003) Formation of ironsulfur clusters in bacteria: an emerging field in bioinorganic chemistry, Curr. Opin. Chem. Biol., 7, 166–173.PubMedCrossRefGoogle Scholar
  37. 37.
    Biederbick, A., Stehling, O., Rosser, R., Niggemeyer, B., Nakai, Y., Elsasser, H. P., and Lill, R. (2006) Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation, Mol. Cell. Biol., 26, 5675–5687.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Shi, R., Proteau, A., Villarroya, M., Moukadiri, I., Zhang, L., Trempe, J. F., Matte, A., Armengod, M. E., and Cygler, M. (2010) Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein–protein interactions, PLoS Biol., 8, e1000354.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Adam, A. C., Bornhovd, C., Prokisch, H., Neupert, W., and Hell, K. (2006) The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria, EMBO J., 25, 174–183.PubMedCrossRefGoogle Scholar
  40. 40.
    Bandyopadhyay, S., Chandramouli, K., and Johnson, M. K. (2008) Iron-sulfur cluster biosynthesis, Biochem. Soc. Trans., 36, 1112–1119.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Raulfs, E. C., O’Carroll, I. P., Dos Santos, P. C., Unciuleac, M. C., and Dean, D. R. (2008) In vivo iron-sulfur cluster formation, Proc. Natl. Acad. Sci. USA, 105, 8591–8596.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fox, N. G., Das, D., Chakrabarti, M., Lindahl, P. A., and Barondeau, D. P. (2015) Frataxin accelerates [2Fe-2S] cluster formation on the human Fe–S assembly complex, Biochemistry, 54, 3880–3889.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Fox, N. G., Chakrabarti, M., McCormick, S. P., Lindahl, P. A., and Barondeau, D. P. (2015) The human iron–sulfur assembly complex catalyzes the synthesis of [2Fe-2S] clusters on ISCU2 that can be transferred to acceptor molecules, Biochemistry, 54, 3871–3879.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Schmucker, S., Martelli, A., Colin, F., Page, A., Wattenhofer-Donze, M., Reutenauer, L., and Puccio, H. (2011) Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron–sulfur assembly complex, PLoS One, 6, e16199.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tsai, C. L., and Barondeau, D. P. (2010) Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex, Biochemistry, 49, 9132–9139.PubMedCrossRefGoogle Scholar
  46. 46.
    Bridwell-Rabb, J., Winn, A. M., and Barondeau, D. P. (2011) Structure-function analysis of Friedreich’s ataxia mutants reveals determinants of frataxin binding and activation of the Fe–S assembly complex, Biochemistry, 50, 7265–7274.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Shi, Y., Ghosh, M., Kovtunovych, G., Crooks, D. R., and Rouault, T. A. (2012) Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis, Biochim. Biophys. Acta, 1823, 484–492.PubMedCrossRefGoogle Scholar
  48. 48.
    Chandramouli, K., Unciuleac, M. C., Naik, S., Dean, D. R., Huynh, B. H., and Johnson, M. K. (2007) Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein, Biochemistry, 46, 6804–6811.PubMedCrossRefGoogle Scholar
  49. 49.
    Al-Hassnan, Z. N., Al-Dosary, M., Alfadhel, M., Faqeih, E. A., Alsagob, M., Kenana, R., Almass, R., Al-Harazi, O. S., Al-Hindi, H., Malibari, O. I., Almutari, F. B., Tulbah, S., Alhadeq, F., Al-Sheddi, T., Alamro, R., AlAsmari, A., Almuntashri, M., Alshaalan, H., Al-Mohanna, F. A., Colak, D., and Kaya, N. (2015) ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder, J. Med. Genet., 52, 186–194.PubMedCrossRefGoogle Scholar
  50. 50.
    Uhrigshardt, H., Singh, A., Kovtunovych, G., Ghosh, M., and Rouault, T. A. (2010) Characterization of the human HSC20, an unusual DnaJ type III protein, involved in ironsulfur cluster biogenesis, Hum. Mol. Genet., 19, 3816–3834.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Vickery, L. E., and Cupp-Vickery, J. R. (2007) Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation, Crit. Rev. Biochem. Mol. Biol., 42, 95–111.PubMedCrossRefGoogle Scholar
  52. 52.
    Maio, N., Singh, A., Uhrigshardt, H., Saxena, N., Tong, W. H., and Rouault, T. A. (2014) Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery, Cell Metab., 19, 445–457.PubMedCrossRefGoogle Scholar
  53. 53.
    Maio, N., and Rouault, T. A. (2015) Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery, Biochim. Biophys. Acta, 1853, 1493–1512.PubMedCrossRefGoogle Scholar
  54. 54.
    Bych, K., Kerscher, S., Netz, D. J., Pierik, A. J., Zwicker, K., Huynen, M. A., Lill, R., Brandt, U., and Balk, J. (2008) The iron-sulphur protein Ind1 is required for effective complex I assembly, EMBO J., 27, 1736–1746.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sheftel, A. D., Stehling, O., Pierik, A. J., Netz, D. J., Kerscher, S., Elsasser, H. P., Wittig, I., Balk, J., Brandt, U., and Lill, R. (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I, Mol. Cell. Biol., 29, 6059–6073.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lill, R., Hoffmann, B., Molik, S., Pierik, A. J., Rietzschel, N., Stehling, O., Uzarska, M. A., Webert, H., Wilbrecht, C., and Muhlenhoff, U. (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism, Biochim. Biophys. Acta, 1823, 1491–1508.PubMedCrossRefGoogle Scholar
  57. 57.
    Stehling, O., Wilbrecht, C., and Lill, R. (2014) Mitochondrial iron-sulfur protein biogenesis and human disease, Biochimie, 100, 61–77.PubMedCrossRefGoogle Scholar
  58. 58.
    Guruharsha, K. G., Rual, J. F., Zhai, B., Mintseris, J., Vaidya, P., Vaidya, N., Beekman, C., Wong, C., Rhee, D. Y., Cenaj, O., McKillip, E., Shah, S., Stapleton, M., Wan, K. H., Yu, C., Parsa, B., Carlson, J. W., Chen, X., Kapadia, B., VijayRaghavan, K., Gygi, S. P., Celniker, S. E., Obar, R. A., and Artavanis-Tsakonas, S. (2011) A protein complex network of Drosophila melanogaster, Cell, 147, 690–703.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lim, S. C., Friemel, M., Marum, J. E., Tucker, E. J., Bruno, D. L., Riley, L. G., Christodoulou, J., Kirk, E. P., Boneh, A., DeGennaro, C. M., Springer, M., Mootha, V. K., Rouault, T. A., Leimkuhler, S., Thorburn, D. R., and Compton, A. G. (2013) Mutations in LYRM4, encoding iron-sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes, Hum. Mol. Genet., 22, 4460–4473.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Saha, P. P., Srivastava, S., Kumar, S. K. P., Sinha, D., and D’Silva, P. (2015) Mapping key residues of ISD11 critical for NFS1-ISD11 subcomplex stability: implications in the development of mitochondrial disorder, COXPD19, J. Biol. Chem., 290, 25876–25890.PubMedCrossRefGoogle Scholar
  61. 61.
    Page, C. C., Moser, C. C., Chen, X., and Dutton, P. L. (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction, Nature, 402, 47–52.PubMedCrossRefGoogle Scholar
  62. 62.
    Ohnishi, T. (1975) Thermodynamic and EPR characterization of iron-sulfur centers in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart, Biochim. Biophys. Acta, 387, 475–490.PubMedCrossRefGoogle Scholar
  63. 63.
    Nakamaru-Ogiso, E. (2012) Iron-sulfur clusters in complex I, in A Structural Perspective on Respiratory Complex I (Sazanov, L., ed.) Springer, The Netherlands, pp. 61–79.CrossRefGoogle Scholar
  64. 64.
    Pohl, T., Bauer, T., Dorner, K., Stolpe, S., Sell, P., Zocher, G., and Friedrich, T. (2007) Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer, Biochemistry, 46, 6588–6596.PubMedCrossRefGoogle Scholar
  65. 65.
    Tocilescu, M. A., Fendel, U., Zwicker, K., Drose, S., Kerscher, S., and Brandt, U. (2010) The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction, Biochim. Biophys. Acta, 1797, 625–632.PubMedCrossRefGoogle Scholar
  66. 66.
    Tocilescu, M. A., Zickermann, V., Zwicker, K., and Brandt, U. (2010) Quinone binding and reduction by respiratory complex I, Biochim. Biophys. Acta, 1797, 1883–1890.PubMedCrossRefGoogle Scholar
  67. 67.
    Friedrich, T., Hellwig, P., and Einsle, O. (2012) On the mechanism of the respiratory complex I, in A Structural Perspective on Respiratory Complex I (Sazanov, L., ed.) Springer, The Netherlands, pp. 23–59.CrossRefGoogle Scholar
  68. 68.
    Hinchliffe, P., Carroll, J., and Sazanov, L. A. (2006) Identification of a novel subunit of respiratory complex I from Thermus thermophilus, Biochemistry, 45, 4413–4420.PubMedCrossRefGoogle Scholar
  69. 69.
    Sazanov, L. A., and Hinchliffe, P. (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus, Science, 311, 1430–1436.PubMedCrossRefGoogle Scholar
  70. 70.
    Ohnishi, T. (1998) Iron-sulfur clusters/semiquinones in complex I, Biochim. Biophys. Acta, 1364, 186–206.PubMedCrossRefGoogle Scholar
  71. 71.
    Hayashi, T., and Stuchebrukhov, A. A. (2010) Electron tunneling in respiratory complex I, Proc. Natl. Acad. Sci. USA, 107, 19157–19162.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kmita, K., Wirth, C., Warnau, J., Guerrero-Castillo, S., Hunte, C., Hummer, G., Kaila, V. R., Zwicker, K., Brandt, U., and Zickermann, V. (2015) Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I, Proc. Natl. Acad. Sci. USA, 112, 5685–5690.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ohnishi, T., and Salerno, J. C. (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I), FEBS Lett., 579, 4555–4561.PubMedCrossRefGoogle Scholar
  74. 74.
    Zwicker, K., Galkin, A., Drose, S., Grgic, L., Kerscher, S., and Brandt, U. (2006) The Redox-Bohr group associated with iron-sulfur cluster N2 of complex I, J.Biol. Chem., 281, 23013–23017.PubMedCrossRefGoogle Scholar
  75. 75.
    Yano, T., Dunham, W. R., and Ohnishi, T. (2005) Characterization of the delta muH+-sensitive ubisemiquinone species (SQ(Nf)) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I, Biochemistry, 44, 1744–1754.PubMedCrossRefGoogle Scholar
  76. 76.
    Nakamaru-Ogiso, E., Narayanan, M., and Sakyiama, J. A. (2014) Roles of semiquinone species in proton pumping mechanism by complex I, J.Bioenerg. Biomembr., 46, 269–277.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sazanov, L. A. (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain, Biochemistry, 46, 2275–2288.PubMedCrossRefGoogle Scholar
  78. 78.
    Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M., and Rao, Z. (2005) Crystal structure of mitochondrial respiratory membrane protein complex II, Cell, 121, 1043–1057.PubMedCrossRefGoogle Scholar
  79. 79.
    Iverson, T. M. (2013) Catalytic mechanisms of complex IIenzymes: a structural perspective, Biochim. Biophys. Acta, 1827, 648–657.PubMedCrossRefGoogle Scholar
  80. 80.
    Van Vranken, J. G., Na, U., Winge, D. R., and Rutter, J. (2015) Protein-mediated assembly of succinate dehydrogenase and its cofactors, Crit. Rev. Biochem. Mol. Biol., 50, 168–180.PubMedCrossRefGoogle Scholar
  81. 81.
    Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S., and Jap, B. K. (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex, Science, 281, 64–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W., Crofts, A. R., Berry, E. A., and Kim, S. H. (1998) Electron transfer by domain movement in cytochrome bc1, Nature, 392, 677–684.PubMedCrossRefGoogle Scholar
  83. 83.
    Akiba, T., Toyoshima, C., Matsunaga, T., Kawamoto, M., Kubota, T., Fukuyama, K., Namba, K., and Matsubara, H. (1996) Three-dimensional structure of bovine cytochrome bc1 complex by electron cryomicroscopy and helical image reconstruction, Nat. Struct. Biol., 3, 553–561.PubMedCrossRefGoogle Scholar
  84. 84.
    Xia, D., Esser, L., Tang, W. K., Zhou, F., Zhou, Y., Yu, L., and Yu, C. A. (2013) Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function, Biochim. Biophys. Acta, 1827, 1278–1294.PubMedCrossRefGoogle Scholar
  85. 85.
    Cooley, J. W. (2013) Protein conformational changes involved in the cytochrome bc1 complex catalytic cycle, Biochim. Biophys. Acta, 1827, 1340–1345.PubMedCrossRefGoogle Scholar
  86. 86.
    Gurung, B., Yu, L., Xia, D., and Yu, C. A. (2005) The ironsulfur cluster of the Rieske iron-sulfur protein functions as a proton-exiting gate in the cytochrome bc(1) complex, J. Biol. Chem., 280, 24895–24902.PubMedCrossRefGoogle Scholar
  87. 87.
    Iwata, S., Saynovits, M., Link, T. A., and Michel, H. (1996) Structure of a water soluble fragment of the “Rieske” iron-sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 Å resolution, Structure, 4, 567–579.PubMedCrossRefGoogle Scholar
  88. 88.
    Link, T. A., and Iwata, S. (1996) Functional implications of the structure of the “Rieske” iron-sulfur protein of bovine heart mitochondrial cytochrome bc1 complex, Biochim. Biophys. Acta, 1275, 54–60.PubMedCrossRefGoogle Scholar
  89. 89.
    Smith, J. L., Zhang, H., Yan, J., Kurisu, G., and Cramer, W. A. (2004) Cytochrome bc complexes: a common core of structure and function surrounded by diversity in the outlying provinces, Curr. Opin. Struct. Biol., 14, 432–439.PubMedCrossRefGoogle Scholar
  90. 90.
    Esser, L., Gong, X., Yang, S., Yu, L., Yu, C. A., and Xia, D. (2006) Surface-modulated motion switch: capture and release of iron-sulfur protein in the cytochrome bc1 complex, Proc. Natl. Acad. Sci. USA, 103, 13045–13050.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Berry, E. A., De Bari, H., and Huang, L. S. (2013) Unanswered questions about the structure of cytochrome bc1 complexes, Biochim. Biophys. Acta, 1827, 1258–1277.PubMedCrossRefGoogle Scholar
  92. 92.
    Borek, A., Kuleta, P., Ekiert, R., Pietras, R., Sarewicz, M., and Osyczka, A. (2015) Mitochondrial disease-related mutation G167P in cytochrome b of rhodobacter capsulatus cytochrome bc1 (S151P in human) affects the equilibrium distribution of [2Fe-2S] cluster and generation of superoxide, J. Biol. Chem., 290, 23781–23792.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sanchez, E., Lobo, T., Fox, J. L., Zeviani, M., Winge, D. R., and Fernandez-Vizarra, E. (2013) LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial Complex III assembly in human cells, Biochim. Biophys. Acta, 1827, 285–293.PubMedCrossRefGoogle Scholar
  94. 94.
    Lehninger, A. L., Nelson, D. L., and Cox, M. M. (2013) Lehninger Principles of Biochemistry, 6th Edn., W.H. Freeman, New York.Google Scholar
  95. 95.
    Robbins, A. H., and Stout, C. D. (1989) The structure of aconitase, Proteins, 5, 289–312.PubMedCrossRefGoogle Scholar
  96. 96.
    Robbins, A. H., and Stout, C. D. (1989) Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal, Proc. Natl. Acad. Sci. USA, 86, 3639–3643.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lauble, H., Kennedy, M. C., Beinert, H., and Stout, C. D. (1992) Crystal structures of aconitase with isocitrate and nitroisocitrate bound, Biochemistry, 31, 2735–2748.PubMedCrossRefGoogle Scholar
  98. 98.
    Talib, J., and Davies, M. J. (2016) Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells, J. Biol. Inorg. Chem., 21, 305–317.PubMedCrossRefGoogle Scholar
  99. 99.
    Myers, C. R., Antholine, W. E., and Myers, J. M. (2010) The pro-oxidant chromium(VI) inhibits mitochondrial complex I, complex II,and aconitase in the bronchial epithelium: EPR markers for Fe-S proteins, Free Radic. Biol. Med., 49, 1903–1915.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Han, D., Canali, R., Garcia, J., Aguilera, R., Gallaher, T. K., and Cadenas, E. (2005) Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione, Biochemistry, 44, 11986–11996.PubMedCrossRefGoogle Scholar
  101. 101.
    Beinert, H., and Kennedy, M. C. (1993) Aconitase, a twofaced protein: enzyme and iron regulatory factor, FASEB J., 7, 1442–1449.PubMedGoogle Scholar
  102. 102.
    Eisenstein, R. S. (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism, Annu. Rev. Nutr., 20, 627–662.PubMedCrossRefGoogle Scholar
  103. 103.
    Hentze, M. W., and Kuhn, L. C. (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress, Proc. Natl. Acad. Sci. USA, 93, 8175–8182.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Cairo, G., Recalcati, S., Pietrangelo, A., and Minotti, G. (2002) The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage, Free Radic. Biol. Med., 32, 1237–1243.PubMedCrossRefGoogle Scholar
  105. 105.
    Chen, X. J., Wang, X., Kaufman, B. A., and Butow, R. A. (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance, Science, 307, 714–717.PubMedCrossRefGoogle Scholar
  106. 106.
    Ferrer, M., Golyshina, O. V., Beloqui, A., Golyshin, P. N., and Timmis, K. N. (2007) The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated, Nature, 445, 91–94.PubMedCrossRefGoogle Scholar
  107. 107.
    White, M. F., and Dillingham, M. S. (2012) Iron-sulphur clusters in nucleic acid processing enzymes, Curr. Opin. Struct. Biol., 22, 94–100.PubMedCrossRefGoogle Scholar
  108. 108.
    Boal, A. K., Yavin, E., and Barton, J. K. (2007) DNA repair glycosylases with a [4Fe-4S] cluster: a redox cofactor for DNA-mediated charge transport? J. Inorg. Biochem., 101, 1913–1921.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Genereux, J. C., Boal, A. K., and Barton, J. K. (2010) DNA-mediated charge transport in redox sensing and signaling, J. Am. Chem. Soc., 132, 891–905.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Atta, M., Mulliez, E., Arragain, S., Forouhar, F., Hunt, J. F., and Fontecave, M. (2010) S-adenosylmethioninedependent radical-based modification of biological macromolecules, Curr. Opin. Struct. Biol., 20, 684–692.PubMedCrossRefGoogle Scholar
  111. 111.
    Liu, H., Rudolf, J., Johnson, K. A., McMahon, S. A., Oke, M., Carter, L., McRobbie, A. M., Brown, S. E., Naismith, J. H., and White, M. F. (2008) Structure of the DNA repair helicase XPD, Cell, 133, 801–812.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wu, Y., Sommers, J. A., Suhasini, A. N., Leonard, T., Deakyne, J. S., Mazin, A. V., Shin-Ya, K., Kitao, H., and Brosh, R. M., Jr. (2010) Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein–DNA complexes, Blood, 116, 3780–3791.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Landry, A. P., and Ding, H. (2014) The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster, Biomed Res. Int., 285791.Google Scholar
  114. 114.
    Capo-Chichi, J. M., Bharti, S. K., Sommers, J. A., Yammine, T., Chouery, E., Patry, L., Rouleau, G. A., Samuels, M. E., Hamdan, F. F., Michaud, J. L., Brosh, R. M., Jr., Megarbane, A., and Kibar, Z. (2013) Identification and biochemical characterization of a novel mutation in DDX11 causing Warsaw breakage syndrome, Hum. Mutat., 34, 103–107.PubMedCrossRefGoogle Scholar
  115. 115.
    Yeeles, J. T., Cammack, R., and Dillingham, M. S. (2009) An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases, J. Biol. Chem., 284, 7746–7755.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Budd, M. E., Reis, C. C., Smith, S., Myung, K., and Campbell, J. L. (2006) Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta, Mol. Cell. Biol., 26, 2490–2500.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Burgers, P. M., Stith, C. M., Yoder, B. L., and Sparks, J. L. (2010) Yeast exonuclease 5 is essential for mitochondrial genome maintenance, Mol. Cell. Biol., 30, 1457–1466.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sparks, J. L., Kumar, R., Singh, M., Wold, M. S., Pandita, T. K., and Burgers, P. M. (2012) Human exonuclease 5 is a novel sliding exonuclease required for genome stability, J. Biol. Chem., 287, 42773–42783.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zhang, J., Kasciukovic, T., and White, M. F. (2012) The CRISPR associated protein Cas4 is a 5' to 3' DNA exonuclease with an iron-sulfur cluster, PLoS One, 7, e47232.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lemak, S., Beloglazova, N., Nocek, B., Skarina, T., Flick, R., Brown, G., Popovic, A., Joachimiak, A., Savchenko, A., and Yakunin, A. F. (2013) Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S] cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus, J. Am. Chem. Soc., 135, 17476–17487.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Lemak, S., Nocek, B., Beloglazova, N., Skarina, T., Flick, R., Brown, G., Joachimiak, A., Savchenko, A., and Yakunin, A. F. (2014) The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity, Nucleic Acids Res., 42, 11144–11155.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Tuteja, N., and Tuteja, R. (2004) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery, Eur. J. Biochem., 271, 1835–1848.PubMedCrossRefGoogle Scholar
  123. 123.
    White, M. F. (2009) Structure, function and evolution of the XPD family of iron-sulfur-containing 5'→3' DNA helicases, Biochem. Soc. Trans., 37, 547–551.PubMedCrossRefGoogle Scholar
  124. 124.
    Wu, Y., and Brosh, R. M., Jr. (2012) DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster, Nucleic Acids Res., 40, 4247–4260.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Suhasini, A. N., and Brosh, R. M., Jr. (2013) DNA helicases associated with genetic instability, cancer, and aging, Adv. Exp. Med. Biol., 767, 123–144.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Rudolf, J., Makrantoni, V., Ingledew, W. J., Stark, M. J., and White, M. F. (2006) The DNA repair helicases XPD and FancJ have essential iron-sulfur domains, Mol. Cell, 23, 801–808.PubMedCrossRefGoogle Scholar
  127. 127.
    Fan, L., Fuss, J. O., Cheng, Q. J., Arvai, A. S., Hammel, M., Roberts, V. A., Cooper, P. K., and Tainer, J. A. (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations, Cell, 133, 789–800.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wolski, S. C., Kuper, J., Hanzelmann, P., Truglio, J. J., Croteau, D. L., Van Houten, B., and Kisker, C. (2008) Crystal structure of the Fe-S cluster-containing nucleotide excision repair helicase XPD, PLoS Biol., 6, e149.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Pugh, R. A., Honda, M., Leesley, H., Thomas, A., Lin, Y., Nilges, M. J., Cann, I. K., and Spies, M. (2008) The ironcontaining domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA–doublestranded DNA junction, J. Biol. Chem., 283, 1732–1743.PubMedCrossRefGoogle Scholar
  130. 130.
    Sommers, J. A., Banerjee, T., Hinds, T., Wan, B., Wold, M. S., Lei, M., and Brosh, R. M., Jr. (2014) Novel function of the Fanconi anemia group J or RECQ1 helicase to disrupt protein–DNA complexes in a replication protein A-stimulated manner, J. Biol. Chem., 289, 19928–19941.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Mishra, N. C. (1995) Molecular Biology of Nucleases, CRC Press, Boca Raton.Google Scholar
  132. 132.
    Sisakova, E., Weiserova, M., Dekker, C., Seidel, R., and Szczelkun, M. D. (2008) The interrelationship of helicase and nuclease domains during DNA translocation by the molecular motor EcoR124I, J. Mol. Biol., 384, 1273–1286.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Wigley, D. B. (2013) Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB, Nat. Rev. Microbiol., 11, 9–13.PubMedGoogle Scholar
  134. 134.
    Zheng, L., Zhou, M., Guo, Z., Lu, H., Qian, L., Dai, H., Qiu, J., Yakubovskaya, E., Bogenhagen, D. F., Demple, B., and Shen, B. (2008) Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates, Mol. Cell, 32, 325–336.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Duxin, J. P., Dao, B., Martinsson, P., Rajala, N., Guittat, L., Campbell, J. L., Spelbrink, J. N., and Stewart, S. A. (2009) Human Dna2 is a nuclear and mitochondrial DNA maintenance protein, Mol. Cell. Biol., 29, 4274–4282.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kang, Y. H., Lee, C. H., and Seo, Y. S. (2010) Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes, Crit. Rev. Biochem. Mol. Biol., 45, 71–96.PubMedCrossRefGoogle Scholar
  137. 137.
    Taha, T. A., Kitatani, K., El-Alwani, M., Bielawski, J., Hannun, Y. A., and Obeid, L. M. (2006) Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis, FASEB J., 20, 482–484.PubMedGoogle Scholar
  138. 138.
    Abou-Ghali, M., and Stiban, J. (2015) Regulation of ceramide channel formation and disassembly: insights on the initiation of apoptosis, Saudi J. Biol. Sci., 22, 760–772.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Stiban, J., and Perera, M. (2015) Very long chain ceramides interfere with C16-ceramide-induced channel formation: a plausible mechanism for regulating the initiation of intrinsic apoptosis, Biochim. Biophys. Acta, 1848, 561–567.PubMedCrossRefGoogle Scholar
  140. 140.
    Wiley, S. E., Murphy, A. N., Ross, S. A., Van der Geer, P., and Dixon, J. E. (2007) MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity, Proc. Natl. Acad. Sci. USA, 104, 5318–5323.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kusminski, C. M., Holland, W. L., Sun, K., Park, J., Spurgin, S. B., Lin, Y., Askew, G. R., Simcox, J. A., McClain, D. A., Li, C., and Scherer, P. E. (2012) MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity, Nat. Med., 18, 1539–1549.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Landry, A. P., and Ding, H. (2014) Redox control of human mitochondrial outer membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and hydrogen peroxide, J. Biol. Chem., 289, 4307–4315.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Via, A., Ferre, F., Brannetti, B., Valencia, A., and HelmerCitterich, M. (2000) Three-dimensional view of the surface motif associated with the P-loop structure: cis and trans cases of convergent evolution, J. Mol. Biol., 303, 455–465.PubMedCrossRefGoogle Scholar
  144. 144.
    Lipper, C. H., Paddock, M. L., Onuchic, J. N., Mittler, R., Nechushtai, R., and Jennings, P. A. (2015) Cancerrelated NEET proteins transfer 2Fe-2S clusters to anamorsin, a protein required for cytosolic iron-sulfur cluster biogenesis, PLoS One, 10, e0139699.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Golinelli-Cohen, M. P., Lescop, E., Mons, C., Goncalves, S., Clemancey, M., Santolini, J., Guittet, E., Blondin, G., Latour, J. M., and Bouton, C. (2016) Redox control of the human iron-sulfur repair protein MitoNEET activity via its iron-sulfur cluster, J. Biol. Chem., 291, 7583–7593.PubMedCrossRefGoogle Scholar
  146. 146.
    Ferecatu, I., Goncalves, S., Golinelli-Cohen, M. P., Clemancey, M., Martelli, A., Riquier, S., Guittet, E., Latour, J. M., Puccio, H., Drapier, J. C., Lescop, E., and Bouton, C. (2014) The diabetes drug target MitoNEET governs a novel trafficking pathway to rebuild an Fe-S cluster into cytosolic aconitase/iron regulatory protein 1, J. Biol. Chem., 289, 28070–28086.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Shulga, N., and Pastorino, J. G. (2014) Mitoneet mediates TNFalpha-induced necroptosis promoted by exposure to fructose and ethanol, J. Cell Sci., 127, 896–907.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Sohn, Y. S., Tamir, S., Song, L., Michaeli, D., Matouk, I., Conlan, A. R., Harir, Y., Holt, S. H., Shulaev, V., Paddock, M. L., Hochberg, A., Cabanchick, I. Z., Onuchic, J. N., Jennings, P. A., Nechushtai, R., and Mittler, R. (2013) NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth, Proc. Natl. Acad. Sci. USA, 110, 14676–14681.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Shimizu, R., Lan, N. N., Tai, T. T., Adachi, Y., Kawazoe, A., Mu, A., and Taketani, S. (2014) p53 directly regulates the transcription of the human frataxin gene and its lack of regulation in tumor cells decreases the utilization of mitochondrial iron, Gene, 551, 79–85.PubMedCrossRefGoogle Scholar
  150. 150.
    Shakoury-Elizeh, M., Protchenko, O., Berger, A., Cox, J., Gable, K., Dunn, T. M., Prinz, W. A., Bard, M., and Philpott, C. C. (2010) Metabolic response to iron deficiency in Saccharomyces cerevisiae, J. Biol. Chem., 285, 14823–14833.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Yang, Z., Wang, W. E., and Zhang, Q. (2013) CIAPIN1 siRNA inhibits proliferation, migration and promotes apoptosis of VSMCs by regulating Bcl-2 and Bax, Curr. Neurovasc. Res., 10, 4–10.PubMedCrossRefGoogle Scholar
  152. 152.
    Banci, L., Ciofi-Baffoni, S., Mikolajczyk, M., Winkelmann, J., Bill, E., and Pandelia, M. E. (2013) Human anamorsin binds [2Fe-2S] clusters with unique electronic properties, J. Biol. Inorg. Chem., 18, 883–893.PubMedCrossRefGoogle Scholar
  153. 153.
    Netz, D. J., Stumpfig, M., Dore, C., Muhlenhoff, U., Pierik, A. J., and Lill, R. (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis, Nat. Chem. Biol., 6, 758–765.PubMedCrossRefGoogle Scholar
  154. 154.
    Vernis, L., Facca, C., Delagoutte, E., Soler, N., Chanet, R., Guiard, B., Faye, G., and Baldacci, G. (2009) A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast, PLoS One, 4, e4376.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of Biology and BiochemistryBirzeit UniversityBirzeitPalestine
  2. 2.Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and MedicineMichigan State UniversityEast LansingUSA

Personalised recommendations