Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 9, pp 986–998 | Cite as

Dioxygenases of chlorobiphenyl-degrading species Rhodococcus wratislaviensis G10 and chlorophenol-degrading species Rhodococcus opacus 1CP induced in benzoate-grown cells and genes potentially involved in these processes

  • I. P. SolyanikovaEmail author
  • O. V. Borzova
  • E. V. Emelyanova
  • E. S. Shumkova
  • N. V. Prisyazhnaya
  • E. G. Plotnikova
  • L. A. Golovleva
Article

Abstract

Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding αand β-subunits of protocatechuate 3,4-dioxygenase and to two genes of theR. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.

Keywords

Rhodococcus wratislaviensis G10 Rhodococcus opacus 1CP benzoate catechol 1,2-dioxygenase protocatechuate 3,4-dioxygenase biodegradation genes 

Abbreviations

Amax

maximal activity at saturation with substrate

BDO

benzoate 1,2-dioxygenase

Cat

catechol

Cat-1,2-DO

catechol 1,2-dioxygenase

Cat-2,3-DO

catechol 2,3-dioxygenase

4-CCat

4-chlorocatechol

3,5and 4,5-DCCat

3,5and 4,5dichlorocatechols

Ki

inhibition constant

Km

Michaelis constant

MALDI-TOF

matrix-assisted laser desorption/ionization-time of flight mass spectrometry

3MCat and 4MCat

3and 4-methylcatechol

OD

optical density

PCA

protocatechuate

PCA-3,4-DO

protocatechuate 3,4-dioxygenase

pHBA

para-hydroxybenzoate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pieper, D. H. (2005) Aerobic degradation of polychlorinated biphenyls, Appl. Microbiol. Biotechnol., 67, 170–191.CrossRefPubMedGoogle Scholar
  2. 2.
    Pieper, D. H., Gonzalez, B., Camara, B., Perez-Pantoja, D., and Reineke, W. (2010) Aerobic degradation of chloroaromatics, in Handbook of Hydrocarbon and Lipid Microbiology ( Timmis, K. N., ed.) Springer-Verlag, BerlinHeidelberg, pp. 839-864.Google Scholar
  3. 3.
    Du, L., Ma, L., Qi, F., Zheng, X., Jiang, C., Li, A., Wan, X., Liu, S.-J., and Li, S. (2016) Characterization of a unique pathway for 4-cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum, J. Biol. Chem., 291, 6583–6594.CrossRefPubMedGoogle Scholar
  4. 4.
    Field, J. A., and Sierra-Alvarez, R. (2008) Microbial transformation of chlorinated benzoates, Environ. Sci. Biotechnol., 7, 191–210.CrossRefGoogle Scholar
  5. 5.
    Neidle, E. L., Hartnett, C., Ornston, L. N., Bairoch, A., Rekik, M., and Harayama, S. (1991) Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases, J. Bacteriol., 173, 5385–5395.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Parales, R. E., and Resnick, S. M. (2006) Aromatic ring hydroxylating dioxygenases, Pseudomonas, 4, 287–340.CrossRefGoogle Scholar
  7. 7.
    Kweon, O., Kim, S. J., Freeman, J. P., Song, J., Baek, S., and Cerniglia, C. E. (2010) Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1, mBio, 1, pii: e00135–10.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li, M., Yi, P., Liu, Q., Pan, Y., and Qian, G. (2013) Biodegradation of benzoate by protoplast fusant via intergeneric protoplast fusion between Pseudomonas putida and Bacillus subtilis, Int. Biodeterior. Biodegrad., 85, 577–582.CrossRefGoogle Scholar
  9. 9.
    Zaar, A., Eisenreich, W., Bacher, A., and Fuchs, G. (2001) A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus, J. Biol. Chem., 276, 24997–25004.CrossRefPubMedGoogle Scholar
  10. 10.
    Rather, L. J., Knapp, B., Haehnel, W., and Fuchs, G. (2010) Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation, J. Biol. Chem., 285, 20615–20624.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Solyanikova, I. P., Emelyanova, E. V., Shumkova, E. S., Egorova, D. O., Korsakova, E. S., Plotnikova, E. G., and Golovleva, L. A. (2015) Peculiarities of the degradation of benzoate and its chloroand hydroxy-substituted analogs by actinobacteria, Int. Biodeterior. Biodegrad., 100, 155–164.CrossRefGoogle Scholar
  12. 12.
    Solyanikova, I. P., Emelyanova, E. V., Borzova, O. V., and Golovleva, L. A. (2016) Benzoate degradation by Rhodococcus opacus 1CP after a dormancy: characterization of dioxygenases involved in the process, J. Environ. Sci. Health B, 5, 182–191.CrossRefGoogle Scholar
  13. 13.
    Grund, E., Knorr, C., and Eichenlaub, R. (1990) Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp., Appl. Environ. Microbiol., 56, 1459–1464.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Plotnikova, E. G., Rybkina, D. O., Anan’ ina, L. N., Yastrebova, O. V., and Demakov, V. A. (2006) Characterization of microorganisms isolated from technogenic soils of the Kama region, Russ. J. Ecol., 4, 233–240.CrossRefGoogle Scholar
  15. 15.
    Gorlatov, S. N., Maltseva, O. V., Shevchenko, V. I., and Golovleva, L. A. (1989) Degradation of chlorophenols by a culture of Rhodococcus erythropolis, Mikrobiologiya, 58, 647–651.Google Scholar
  16. 16.
    Schlomann, M., Schmidt, E., and Knackmuss, H.-J. (1990) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria, J. Bacteriol., 172, 51125118.Google Scholar
  17. 17.
    Loh, K.-C., and Chua, S.-S. (2002) Ortho pathway of benzoate degradation in Pseudomonas putida: induction of meta pathway at high substrate concentrations, Enzyme Microb. Technol., 30, 620–626.CrossRefGoogle Scholar
  18. 18.
    Kim, Y. H., Cho, K., Yun, S.-H., Kim, J. Y., Kwon, K.-H., Yoo, J. S., and Kim, S. I. (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis, Proteomics, 6, 13011318.Google Scholar
  19. 19.
    Park, S. H., Kim, J. W., Yun, S. H., Leem, S. H., Kahng, H. Y., and Kim, S. I. (2006) Characterization of ß-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach, J. Microbiol., 44, 632–640.PubMedGoogle Scholar
  20. 20.
    Patrauchan, M. A., Florizone, C., Dosanjh, M., Mohn, W. W., Davies, J., and Eltis, L. D. (2005) Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence, J. Bacteriol., 187, 40504063.CrossRefGoogle Scholar
  21. 21.
    Crisp, A., Boschetti, C., Perry, M., Tunnacliffe, A., and Micklem, G. (2015) Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes, Genome Biol., 16, 50.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Polz, M. F., Alm, E. J., and Hanage, W. P. (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure, Trends Genet., 29, 170–175.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Scholl, E. H., Thorne, J. L., McCarter, J. P., and Bird, D. M. (2003) Horizontally transferred genes in plant parasitic nematodes: a high-throughput genomic approach, Genome Biol., 4, R39.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Keeling, P. J., and Palmer, J. D. (2008) Horizontal gene transfer in eukaryotic evolution, Nat. Rev. Genet., 9, 605618.CrossRefGoogle Scholar
  25. 25.
    Foster, A., Barnes, N., Speight, R., and Keane, M. A. (2013) Genomic organization, activity and distribution analysis of the microbial putrescine oxidase degradation pathway, System. Appl. Microbiol., 36, 457–466.Google Scholar
  26. 26.
    Dunning Hotopp, J. C. (2011) Horizontal gene transfer between bacteria and animals, Trends Genet., 27, 157–163.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Syvanen, M. (2012) Evolutionary implications of horizontal gene transfer, Annu. Rev. Genet., 46, 341–358.CrossRefPubMedGoogle Scholar
  28. 28.
    Coleman, M. L., and Chisholm, S. W. (2010) Ecosystemspecific selection pressures revealed through comparative population genomics, Proc. Natl. Acad. Sci. USA, 107, 18635–18639.CrossRefGoogle Scholar
  29. 29.
    Solyanikova, I. P., Plotnikova, E. G., Shumkova, E. S., Robota, I. V., Prisyazhnaya, N. V., and Golovleva, L. A. (2014) Chloromuconolactone dehalogenase ClcF of actinobacteria, J. Environ. Sci. Health B, 49, 422–431.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. P. Solyanikova
    • 1
    Email author
  • O. V. Borzova
    • 1
    • 2
  • E. V. Emelyanova
    • 1
  • E. S. Shumkova
    • 1
    • 3
  • N. V. Prisyazhnaya
    • 1
  • E. G. Plotnikova
    • 4
  • L. A. Golovleva
    • 1
    • 2
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Pushchino State Natural Science InstitutePushchino, Moscow RegionRussia
  3. 3.Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Ecology and Genetics of Microorganisms, Ural BranchRussian Academy of SciencesPermRussia

Personalised recommendations