Biochemistry (Moscow)

, Volume 81, Issue 9, pp 981–985 | Cite as

Plastid genome of Seseli montanum: Complete sequence and comparison with plastomes of other members of the Apiaceae family

  • T. H. SamigullinEmail author
  • M. D. Logacheva
  • E. I. Terenteva
  • G. V. Degtjareva
  • C. M. Vallejo-Roman


This work reports the complete plastid (pt) DNA sequence of Seseli montanum L. of the Apiaceae family, determined using next-generation sequencing technology. The complete genome sequence has been deposited in GenBank with accession No. KM035851. The S. montanum plastome is 147,823 bp in length. The plastid genome has a typical structure for angiosperms and contains a large single-copy region (LSC) of 92,620 bp and a small single-copy region (SSC) of 17,481 bp separated by a pair of 18,861 bp inverted repeats (IRa and IRb). The composition, gene order, and AT-content in the S. montanum plastome are similar to that of a typical flowering plant pt DNA. One hundred fourteen unique genes have been identified, including 30 tRNA genes, four rRNA genes, and 80 protein genes. Of 18 intron-containing genes found, 16 genes have one intron, and two genes (ycf3, clpP) have two introns. Comparative analysis of Apiaceae plastomes reveals in the S. montanum plastome a LSC/IRb junction shift, so that the part of the ycf2 (4980 bp) gene is located in the LSC, but the other part of ycf2 (1301 bp) is within the inverted repeat. Thus, structural rearrangements in the plastid genome of S. montanum result in an enlargement of the LSC region by means of capture of a large part of ycf2, in contrast to eight Apiaceae plastomes where the complete ycf2 gene sequence is located in the inverted repeat.


plastid genome genome comparative analysis Seseli montanum Apiaceae 



cetyltrimethylammonium bromide


inverted repeat


junction between LSC and IR


junction between SSC and IR


large single-copy region


small single-copy region


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palmer, J. D. (1991) Plastid chromosome: structure and evolution, in The Molecular Biology of Plastids ( Bogorad, L., and Vasil, I., eds.) Vol. 7A, pp. 5-53.Google Scholar
  2. 2.
    Kolodner, R., and Tewari, K. K. (1979) Inverted repeats in chloroplast DNA from higher plants, Proc. Natl. Acad. Sci. USA, 76, 41–45.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jansen, R. K., and Ruhlman, T. A. (2012) Genomics of chloroplasts and mitochondria, in The Advances in Photosynthesis and Respiration ( Bock, R., and Knoop, V., eds.) Vol. 35, pp. 103-126.Google Scholar
  4. 4.
    Lavin, M., Doyle, J. J., and Palmer, J. D. (1990) Evolutionary significance of the loss of the chloroplastDNA inverted repeat in the Leguminosae subfamily Papilionoideae, Evolution, 44, 390–402.CrossRefGoogle Scholar
  5. 5.
    Logacheva, M. D., Penin, A. A., Vallejo-Roman, C. M., and Antonov, A. S. (2009) ITS phylogeny of West Asian Heracleum species and related taxa of UmbelliferaeTordylieae W. D. J. Koch, with notes on evolution of their psbA–trnH sequences, Mol. Biol., 43, 757–765.Google Scholar
  6. 6.
    Shi, C., Liu, Y., Huang, H., Xia, E.-H., Zhang, H.-B., and Gao, L.-Z. (2013) Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms, PLoS One, 8, e59620.CrossRefGoogle Scholar
  7. 7.
    Bayly, M. J., Rigault, P., Spokevicius, A., Ladiges, P. Y., Ades, P. K., Anderson, C., Bossinger, G., Merchant, A., Udovicic, F., Woodrow, I. E., and Tibbits, J. (2013) Chloroplast genome analysis of Australian eucalypts–Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae), Mol. Phylogenet. Evol., 69, 704–716.PubMedGoogle Scholar
  8. 8.
    Dong, W., Liu, H., Xu, C., Zuo, Y., Chen, Z., and Zhou, S. (2014) A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs, BMC Genet., 15, 138.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cai, J., Ma, P.-F., Li, H.-T., and Li, D.-Z. (2015) Complete plastid genome sequencing of four Tilia species (Malvaceae): a comparative analysis and phylogenetic implications, PLoS One, 10, e0142705.Google Scholar
  10. 10.
    Zhu, A., Guo, W., Gupta, S., Fan, W., and Mower, J. P. (2016) Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates, New Phytol., 209, 1747–1756.PubMedGoogle Scholar
  11. 11.
    Plunkett, G. M., and Downie, S. R. (2000) Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae, Syst. Bot., 25, 648–667.CrossRefGoogle Scholar
  12. 12.
    Downie, S. R., and Jansen, R. K. (2015) Comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions, Syst. Bot., 40, 336–351.Google Scholar
  13. 13.
    Valiejo-Roman, C. M., Terentieva, E. I., Samigullin, T. H., Pimenov M. G., Ghahremani-Nejad, F., and Mozaffarian, V. (2006) Molecular data (nrITS-sequencing) reveal relationships among Iranian endemic taxa of the Umbelliferae, Feddes Repert., 117, 5–6.CrossRefGoogle Scholar
  14. 14.
    Downie, S. R., Spalik, K., Katz-Downie, D. S., and Reduron, J.-P. (2010) Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences, Plant Div. Evol., 128, 111–136.CrossRefGoogle Scholar
  15. 15.
    Wicke, S., Schneeweiss, G. M., De Pamphilis, C. W., Muller, K. F., and Quandt, D. (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function, Plant Mol. Biol., 76, 273–297.Google Scholar
  16. 16.
    Doyle, J. J., and Doyle, J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 19, 11–15.Google Scholar
  17. 17.
    Liu, C., Shi, L, Zhu, Y., Chen, H., Zhang, J., Lin, X., and Guan, X. (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences, BMC Genom., 13, 715.Google Scholar
  18. 18.
    Lowe, T. M., and Eddy, S. R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Res., 25, 955–964.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Laslett, D., and Canback, B. (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences, Nucleic Acids Res., 32, 11–16.PubMedGoogle Scholar
  20. 20.
    Lohse, M., Drechsel, O., and Bock, R. (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes, Curr. Genet., 52, 267–274.CrossRefPubMedGoogle Scholar
  21. 21.
    Kurtz, K., and Schleiermacher, Ch. (1999) REPuter: fast computation of maximal repeats in complete genomes, Bioinformatics, 15, 426–427.CrossRefPubMedGoogle Scholar
  22. 22.
    Perry, A. S., and Wolfe, K. Y. (2002) Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat, J. Mol. Evol., 55, 501–508.CrossRefPubMedGoogle Scholar
  23. 23.
    Goulding, S. E., Olmstead, R. G., Morden, C. W., and Wolfe, K. H. (1996) Ebb and flow of the chloroplast inverted repeat, Mol. Gen. Genet., 252, 195–206.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. H. Samigullin
    • 1
    Email author
  • M. D. Logacheva
    • 1
  • E. I. Terenteva
    • 2
  • G. V. Degtjareva
    • 2
  • C. M. Vallejo-Roman
    • 1
  1. 1.Lomonosov Moscow State UniversityBelozersky Institute of Physico-Chemical BiologyMoscowRussia
  2. 2.Lomonosov Moscow State UniversityBiological FacultyMoscowRussia

Personalised recommendations