Biochemistry (Moscow)

, Volume 81, Issue 9, pp 972–980 | Cite as

Molecular genetic markers of intra- and interspecific divergence within starfish and sea urchins (Echinodermata)

  • N. B. PetrovEmail author
  • I. P. Vladychenskaya
  • A. L. Drozdov
  • O. S. Kedrova


A fragment of the mitochondrial COI gene from isolates of several echinoderm species was sequenced. The isolates were from three species of starfish from the Asteriidae family (Asterias amurensis and Aphelasterias japonica collected in the Sea of Japan and Asterias rubens collected in the White Sea) and from the sea urchin Echinocardium cordatum (family Loveniidae) collected in the Sea of Japan. Additionally, regions including internal transcribed spacers and 5.8S rRNA (ITS1–5.8S rDNA–ITS2) were sequenced for the three studied starfish species. Phylogenetic analysis of the obtained COI sequences together with earlier determined homologous COI sequences from Ast. forbesii, Ast. rubens, and Echinocardium laevigaster from the North Atlantic and E. cordatum from the Yellow and North Seas (GenBank) placed them into strictly conspecific clusters with high bootstrap support (99% in all cases). Only two exceptions–Ast. rubens DQ077915 sequence placed with the Ast. forbesii cluster and Aph. japonica DQ992560 sequence placed with the Ast. amurensis cluster–were likely results of species misidentification. The intraspecific polymorphism for the COI gene within the Asteriidae family varied within a range of 0.2-0.9% as estimated from the genetic distances. The corresponding intrageneric and intergeneric values were 10.4-12.1 and 21.8-29.8%, respectively. The interspecific divergence for the COI gene in the sea urchin of Echinocardium genus (family Loveniidae) was significantly higher (17.1-17.7%) than in the starfish, while intergeneric divergence (14.6-25.7%) was similar to that in asteroids. The interspecific genetic distances for the nuclear transcribed sequences (ITS1–5.8S rDNA–ITS2) within the Asteriidae family were lower (3.1-4.5%), and the intergeneric distances were significantly higher (32.8-35.0%), compared to the corresponding distances for the COI gene. These results suggest that the investigated molecular-genetic markers could be used for segregation and identification of echinoderm species.


molecular evolution population speciation Echinodermata cytochrome oxidase subunit I gene internal transcribed spacers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2016_305_MOESM1_ESM.pdf (123 kb)
Supplementary material, approximately 123 KB.


  1. 1.
    Shneyer, V. S. (2007) On the species-specificity of DNA: fifty years later, Biochemistry (Moscow), 72, 1377–1384.CrossRefGoogle Scholar
  2. 2.
    Shubina, E. A., Ponomareva, E. V., Klimov, A. V., Klimova, A. V., and Kedrova, O. S. (2015) Repetitive DNA sequences as an indicator of the level of genetic isolation in fish, Mol. Biol. (Moscow), 49, 405–416.CrossRefGoogle Scholar
  3. 3.
    Ward, R. D., Holmes, B. H., and O’Hara, T. D. (2008) DNA barcoding discriminates echinoderm species, Mol. Ecol. Resour., 8, 1202–1211.CrossRefPubMedGoogle Scholar
  4. 4.
    Minin, K. V., Petrov, N. B., and Vladychenskaya, I. P. (2015) Sea urchins of the genus Gracilechinus Fell & Pawson, from the Pacific Ocean: morphology and evolutionary history, Marine Biol. Res., 11, 253–268.Google Scholar
  5. 5.
    Wares, J. P. (2001) Biogeography of Asterias: North Atlantic climate change and speciation, Biol. Bull., 201, 95–103.CrossRefPubMedGoogle Scholar
  6. 6.
    Goffredi, S. K., Hurtado, L. A., Hallam, S., and Vrijenhoek, R. C. (2003) Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the “pacifica/lepta” species complex, Marine Biol., 142, 311–320.Google Scholar
  7. 7.
    Audzijonyte, A., Krylova, E. M., Sahling, H., and Vrijenhoek, R. C. (2012) Molecular taxonomy reveals broad trans-oceanic distributions and high species diversity of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) in chemosynthetic environments, System. Biodivers., 10, 403–415.CrossRefGoogle Scholar
  8. 8.
    Krylova, E. M., Kamenev, G. M., Vladychenskaya, I. P., and Petrov, N. B. (2015) Vesicomyinae (Bivalvia: Vesicomyidae) of the Kuril–Kamchatka Trench and adjacent abyssal regions, Deep-Sea Res. Part II,111, 198-209.Google Scholar
  9. 9.
    Chen, J., Li, Q., Kong, L., and Yu, H. (2011) How DNA barcodes complement taxonomy and explore species diversity: the case study of a poorly understood marine fauna, PLoS One, 6, e21326.CrossRefGoogle Scholar
  10. 10.
    Ekimova, E., Korshunova, T. A., Shepetov, D. M., Neretina, T. V., Sanamyan, N. P., and Martynov, A. V. (2015) Integrative systematics of northern and Arctic nudibranchs of the genus Dendronotus (Mollusca, Gastropoda), with descriptions of three new species, Zool. J. Linn. Soc., 173, 841–886.Google Scholar
  11. 11.
    Seregin, A. P., Anackov, G., and Friesen, N. (2015) Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): geographical isolation as the driving force of underestimated speciation, Bot. J. Linn. Soc., 178, 67–101.CrossRefGoogle Scholar
  12. 12.
    Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 5, 294–299.Google Scholar
  13. 13.
    Hoareau, T. B., and Boissin, E. (2010) Design of phylumspecific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata, Mol. Ecol. Resour., 10, 960–967.CrossRefPubMedGoogle Scholar
  14. 14.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nei, M., and Kumar, S. (2000) Molecular Evolution and Phylogenetics, Oxford University Press, New York.Google Scholar
  16. 16.
    Kimura, M. A. (1980) Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 16, 111–120.CrossRefPubMedGoogle Scholar
  17. 17.
    Franz, D. R., Worley, E. K., and Merrill, A. S. (1981) Distribution patterns of common sea stars of the Middle Atlantic Continental shelf of the Northwest Atlantic (Gulf of Maine to Cape Hatteras), Biol. Bull. Mar. Biol. Lab., 160, 394–418.CrossRefGoogle Scholar
  18. 18.
    Avise, J. C., and Walker, D. (1999) Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome, Proc. Natl. Acad. Sci. USA, 96, 992–995.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kartavtsev, Yu. F. (2013) Genetic divergence of species and other taxa. Geographic speciation and genetic paradigm of Neo-Darwinism in action, Usp. Sovrem. Biol., 133, 419451.Google Scholar
  20. 20.
    Muller, T., Philippi, N., Dandekar, T., Schultz, J., and Wolf, M. (2007) Distinguishing species, RNA, 13, 14691472.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. B. Petrov
    • 1
    Email author
  • I. P. Vladychenskaya
    • 1
  • A. L. Drozdov
    • 2
    • 3
  • O. S. Kedrova
    • 4
  1. 1.Lomonosov Moscow State UniversityBelozersky Institute of Physico-Chemical BiologyMoscowRussia
  2. 2.Zhirmunsky Institute of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  3. 3.Far Eastern Federal UniversityVladivostokRussia
  4. 4.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia

Personalised recommendations