Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 9, pp 968–971 | Cite as

35S promoter methylation in kanamycin-resistant kalanchoe (Kalanchoe pinnata L.) plants expressing the antimicrobial peptide cecropin P1 transgene

  • T. V. ShevchukEmail author
  • N. S. Zakharchenko
  • S. V. Tarlachkov
  • O. V. Furs
  • O. V. Dyachenko
  • Y. I. Buryanov
Accelerated Publication

Abstract

Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases.

Keywords

Kalanchoe pinnata transgenic plants antimicrobial peptide cecropin P1 DNA methylation 35S cauliflower mosaic virus 35S RNA promoter kanamycin neomycin phosphotransferase II 

Abbreviations

AMP

antimicrobial peptides

cecP1

cecropin P1 gene

Km

kanamycin

nptII

neomycin phosphotransferase II gene

35S promoter

35S cauliflower mosaic virus RNA promoter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buryanov, Y. I. (2015) Adaptive epibiochemistry and epigenetics, Biochemistry (Moscow), 80, 1145–1156.CrossRefGoogle Scholar
  2. 2.
    Kovarik, A., Koukalova, B., Bezdek, M., and Opatrn, Z. (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress, Theor. Appl. Genet., 95, 301–306.CrossRefGoogle Scholar
  3. 3.
    Labra, M., Ghiani, A., Citterio, S., Sgorbati, S., Sala, F., Vannini, C., Ruffini-Castiglione, M., and Bracale, M. (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips, Plant Biol., 4, 694–699.CrossRefGoogle Scholar
  4. 4.
    Dyachenko, O. V., Zakharchenko, N. S., Shevchuk, T. V., Bohnert, H. J., Cushman, J. C., and Buryanov, Y. I. (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress, Biochemistry (Moscow), 71, 461–465.CrossRefGoogle Scholar
  5. 5.
    Boyko, A., Kathiria, P., Zemp, F. J., Yao, Y., Pogribny, I., and Kovalchuk, I. (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (virus-induced plant genome instability), Nucleic Acids Res., 35, 1714–1725.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Campo, S., Manrique, S., Garcia-Martinez, J., and San Segundo, S. (2008) Production of cecropin A in transgenic rice plants has an impact on host gene expression, Plant Biotechnol. J., 6, 585–608.CrossRefPubMedGoogle Scholar
  7. 7.
    Zakharchenko, N. S., Buryanov, Ya. I., Lebedeva, A. A., Pigoleva, S. V., Vetoshkina, D. V., Loktyushov, E. V., Chepurnova, M. A., Kreslavsky, V. D., and Kosobryukhov, A. A. (2013) Physiological peculiarities of transgenic rape plants expressing the gene of antimicrobial peptide cecropin P1, Fiziol. Rast., 60, 424–433.Google Scholar
  8. 8.
    Goyal, R. K., Hancock, R. E. W., Mattoo, A. K., and Misra, S. (2013) Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses, PLoS One, 8, e77505.CrossRefGoogle Scholar
  9. 9.
    Mette, M. F., Aufsatz, W., Van der Winden, J., Matzke, M. A., and Matzke, A. J. (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA, EMBO J., 19, 194–201.CrossRefGoogle Scholar
  10. 10.
    Zakharchenko, N. S., Rukavtsova, E. B., Shevchuk, T. V., Furs, O. V., Pigoleva, S. V., Lebedeva, A. A., Chulina, I. A., Baydakova, L. K., and Buryanov, Ya. I. (2016) Generation and characterization of Kalanchoe pinnata L. plants expressing the gene of the antimicrobial peptide cecropin P1, Prikl. Biokhim. Mikrobiol., 52, 1–8.Google Scholar
  11. 11.
    Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco cultures, Physiol. Plant., 15, 473–497.CrossRefGoogle Scholar
  12. 12.
    Schagger, H., and Von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrilamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 166, 368–379.CrossRefPubMedGoogle Scholar
  13. 13.
    Rodionova, L. N., Zagranichny, V. E., Rodionov, I. L., Lipkin, V. M., and Ivanov, V. T. (1997) Complete solid phase synthesis of subunit of bovine retinal cGMP phosphodiesterase and some physicochemical properties of the synthesized protein, Bioorg. Khim., 23, 933–948.PubMedGoogle Scholar
  14. 14.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, N. Y.Google Scholar
  15. 15.
    Topfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H.-H. (1987) A set of plant expression vectors for transcriptional and translational fusions, Nucleic Acids Res., 15, 5890.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Weinhold, A., Kallenbach, M., and Baldwin, T. (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuate plants, BMC Plant Biol., 13, 99–116.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. V. Shevchuk
    • 1
    Email author
  • N. S. Zakharchenko
    • 1
  • S. V. Tarlachkov
    • 1
  • O. V. Furs
    • 1
  • O. V. Dyachenko
    • 1
  • Y. I. Buryanov
    • 1
  1. 1.Branch of Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations