Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 9, pp 951–967 | Cite as

AP endonuclease 1 as a key enzyme in repair of apurinic/apyrimidinic sites

  • N. S. Dyrkheeva
  • N. A. Lebedeva
  • O. I. LavrikEmail author
Review

Abstract

Human apurinic/apyrimidinic endonuclease 1 (APE1) is one of the key participants in the DNA base excision repair system. APE1 hydrolyzes DNA adjacent to the 5′-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3′-hydroxyl group and a 5′-deoxyribose phosphate moiety. APE1 exhibits 3′-phosphodiesterase, 3′-5′-exonuclease, and 3-phosphatase activities. APE1 was also identified as a redox factor (Ref-1). In this review, data on the role of APE1 in the DNA repair process and in other metabolic processes occurring in cells are analyzed as well as the interaction of this enzyme with DNA and other proteins participating in the repair system.

Keywords

human apurinic/apyrimidinic endonuclease 1 (APE1) AP site base excision repair protein–DNA interactions protein–protein interactions 

Abbreviations

AP-DNA

DNA containing AP site

APE1

apurinic/apyrimidinic endonuclease 1

AP site

apurinic/apyrimidinic site

BER

base excision repair

bp

base pairs

dRP

deoxyribose phosphate

F (tetrahydrofuran)

3′-hydroxy2′-hydroxymethyl-tetrahydrofuran

FAM

fluorescein

FEN1

flap endonuclease 1

nt

nucleotide

NER

nucleotide excision repair

NTH1

homolog 1 of endonuclease III

OGG1

8oxoguanine-DNA glycosylase

8-oxoG

7,8-dihydro-8-oxoguanine

PARP1

poly(ADP-ribose)polymerase 1

PCNA

proliferating cell nuclear antigen

pF

5′-tetrahydrofuran phosphate

PNK

polynucleotide kinase-phosphatase

Pol β

DNA polymerase β

3′-PUA

3′-α,β-4-hydroxypenten-2-al

Tdp1

tyrosyl-DNA phosphodiesterase 1

XRCC1

human X-ray repair cross-complementing protein 1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson, D. M., and Barsky, D. (2001) The major human abasic endonuclease Ape1: formation, consequences and repair of abasic lesions in DNA, Mutat. Res., 484, 283–307.CrossRefGoogle Scholar
  2. 2.
    Lhomme, J., Constant, J. F., and Demeunynck, M. (1999) Abasic DNA structure, reactivity, and recognition, Biopolymers, 52, 65–83.PubMedGoogle Scholar
  3. 3.
    Sczepanski, J. T., Wong, R. S., McKnight, J. N., Bowman, G. D., and Greenberg, M. M. (2010) Rapid DNA–protein cross-linking and strand scission by an abasic site in a nucleosome core particle, Proc. Natl. Acad. Sci. USA, 107, 22475–22480.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lindahl, T. (2000) Suppression of spontaneous mutagenesis in human cells by DNA base excision repair, Mutat. Res., 462, 129–135.PubMedCrossRefGoogle Scholar
  5. 5.
    Scharer, O. D. (2003) DNA damage and repair, Angew. Chem. Int. Ed., 42, 2074–2946.CrossRefGoogle Scholar
  6. 6.
    Lebedeva, N. A., Rechkunova, N. I., El-Khamisy, S. F., and Lavrik, O. I. (2012) Tyrosyl-DNA phosphodiesterase 1 initiates repair of apurinic/apyrimidinic sites, Biochimie, 94, 1749–1753.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lebedeva, N. A., Rechkunova, N. I., Ishchenko, A. A., Saparbaev, M., and Lavrik, O. I. (2013) The mechanism of human tyrosyl-DNA phosphodiesterase 1 in the cleavage of APsite and its synthetic analogs, DNA Repair (Amsterdam), 12, 1037–1042.CrossRefGoogle Scholar
  8. 8.
    Khodyreva, S. N., Prasad, R., Ilina, E. S., Sukhanova, M. V., Kutuzov, M. M., Liu, Y., Hou, E. W., Wilson, S. H., and Lavrik, O. I. (2010) Apurinic/apyrimidinic (AP) site recognition by the 5’-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1), Proc. Natl. Acad. Sci. USA, 107, 22090–22095.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Fortini, P., and Dogliotti, E. (2007) Base damage and single-strand break repair: mechanisms and functional significance of shortand long-patch repair subpathways, DNA Repair (Amsterdam), 6, 398–409.CrossRefGoogle Scholar
  10. 10.
    Sobol, R. W., Prasad, R., Evenski, A., Baker, A., Yang, X. P., Horton, J. K., and Wilson, S. H. (2000) The lyase activity of the DNA repair protein ß-polymerase protects from DNA-damage-induced cytotoxicity, Nature, 405, 807810.Google Scholar
  11. 11.
    Liu, Y., Beard, W. A., Shock, D. D., Prasad, R., Hou, E. W., and Wilson, S. H. (2005) DNA polymerase ß and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair, J. Biol. Chem., 280, 3665–3674.PubMedCrossRefGoogle Scholar
  12. 12.
    Nazarkina, J. K., Petrousseva, I. O., Safronov, I. V., Lavrik, O. I., and Khodyreva, S. N. (2003) Interaction of flap endonuclease-1 and replication protein A with photoreactive intermediates of DNA repair, Biochemistry (Moscow), 68, 934–942.CrossRefGoogle Scholar
  13. 13.
    Lebedeva, N. A., Rechkunova, N. I., Dezhurov, S. V., Khodyreva, S. N., Favre, A., Blanco, L., and Lavrik, O. I. (2005) Comparison of functional properties of mammalian DNA polymerase ? and DNA polymerase ß in reactions of DNA synthesis related to DNA repair, Biochim. Biophys. Acta, 1751, 150–158.PubMedCrossRefGoogle Scholar
  14. 14.
    Sukhanova, M. V., Khodyreva, S. N., Lebedeva, N. A., Prasad, R., Wilson, S. H., and Lavrik, O. I. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase ß and poly(ADP-ribose) polymerase 1: interplay between stranddisplacement DNA synthesis and proofreading exonuclease activity, Nucleic Acids Res., 33, 1222–1229.Google Scholar
  15. 15.
    Sukhanova, M., Khodyreva, S., and Lavrik, O. (2010) Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase ß in long patch base excision repair, Mutat. Res., 685, 80–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Wiederhold, L., Leppard, J. B., Kedar, P., KarimiBusheri, F., Rasouli-Nia, A., Weinfeld, M., Tomkinson, A. E., Izumi, T., Prasad, R., Wilson, S. H., Mitra, S., and Hazra, T. K. (2004) AP endonuclease-independent DNA base excision repair in human cells, Mol. Cell, 15, 209220.CrossRefGoogle Scholar
  17. 17.
    Gros, L., Ishchenko, A. A., Ide, H., Elder, R. H., and Saparbaev, M. K. (2004) The major human APendonuclease (Ape1) is involved in the nucleotide incision repair pathway, Nucleic Acids Res., 32, 73–81.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Piersen, C. E., McCullough, A. K., and Lloyd, R. S. (2000) AP lyases and dRPases: commonality of mechanism, Mutat. Res., 459, 43–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Zharkov, D. O., and Grollman, A. P. (1998) MutY DNA glycosylase: base release and intermediate complex formation, Biochemistry, 37, 12384–12394.PubMedCrossRefGoogle Scholar
  20. 20.
    Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A. (1995) Post-translational modification of poly(ADPribose) polymerase induced by DNA strand breaks, Trends Biochem. Sci., 20, 405–411.PubMedCrossRefGoogle Scholar
  21. 21.
    Evans, A. R., Limp-Foster, M., and Kelley, M. R. (2000) Going APE over ref-1, Mutat. Res., 461, 83–108.PubMedCrossRefGoogle Scholar
  22. 22.
    Li, M., and Wilson, D. M., 3rd (2014) Human apurinic/ apyrimidinic endonuclease 1, Antioxid. Redox Signal., 20, 678–707.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wilson, D. M., 3rd (2003) Properties of and substrate determinants for the exonuclease activity of human apurinic endonuclease Ape1, J. Mol. Biol., 330, 1027–1037.PubMedCrossRefGoogle Scholar
  24. 24.
    Fritz, G. (2000) Human APE/Ref-1 protein, Int. J. Biochem. Cell Biol., 32, 925–929.PubMedCrossRefGoogle Scholar
  25. 25.
    Robson, C. N., Milne, A. M., Pappin, D. J. C., and Hickson, I. D. (1991) Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damage in vitro: homology with bacterial repair enzymes, Nucleic Acids Res., 19, 1087–1092.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mol, C. D., Hosfield, D. J., and Tainer, J. A. (2000) Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3’-ends justify the means, Mutat. Res., 460, 211–229.PubMedCrossRefGoogle Scholar
  27. 27.
    Strauss, P. R., and Holt, C. M. (1998) Domain mapping of human apurinic/apyrimidinic endonuclease, J. Biol. Chem., 273, 14435–14441.PubMedCrossRefGoogle Scholar
  28. 28.
    Chattopadhyay, R., Wiederhold, L., Szczesny, B., Boldogh, I., Hazra, T. K., Izumi, T., and Mitra, S. (2006) Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells, Nucleic Acids Res., 34, 2067–2076.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tell, G., Crivellato, E., Pines, A., Paron, I., Pucillo, C., Manzini, G., Bandiera, A., Kelley, M. R., Di Loreto, C., and Damante, G. (2001) Mitochondrial localization of APE/Ref-1 in thyroid cells, Mutat. Res., 485, 143–152.PubMedCrossRefGoogle Scholar
  30. 30.
    Xanthoudakis, S., Smeyne, R. J., Wallace, J. D., and Curran, T. (1996) The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice, Proc. Natl. Acad. Sci. USA, 93, 8919–8923.PubMedCrossRefGoogle Scholar
  31. 31.
    Fung, H., and Demple, B. (2005) A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells, Mol. Cell, 17, 463–470.PubMedCrossRefGoogle Scholar
  32. 32.
    Izumi, T., Brown, D. B., Naidu, C. V., Bhakat, K. K., MacInnes, M. A., Saito, H., Chen, D. J., and Mitra, S. (2005) Two essential but distinct functions of the mammalian abasic endonuclease, Proc. Natl. Acad. Sci. USA, 102, 5739–5743.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    David, S. S., and Williams, S. D. (1998) Chemistry of glycosylases and endonucleases involved in base-excision repair, Chem. Rev., 98, 1221–1261.PubMedCrossRefGoogle Scholar
  34. 34.
    Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature, 362, 709–715.PubMedCrossRefGoogle Scholar
  35. 35.
    Suh, D., Wilson, D. M., 3rd, and Povirk, L. F. (1997) 3’Phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends, Nucleic Acids Res., 25, 2495–2500.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Krokan, H. E., Nilsen, H., Skorpen, F., Otterlei, M., and Slupphaug, G. (2000) Base excision repair of DNA in mammalian cells, FEBS Lett., 476, 73–77.PubMedCrossRefGoogle Scholar
  37. 37.
    Izumi, T., Hazra, T. K., Boldogh, I., Tomkinson, A. E., Park, M. S., Ikeda, S., and Mitra, S. (2000) Requirement for human APendonuclease 1 for repair of 3’-blocking damage at DNA single-strand brakes induced by reactive oxygen species, Carcinogenesis, 21, 1329–1334.PubMedCrossRefGoogle Scholar
  38. 38.
    Parsons, J. L., Dianova, I. I., and Dianov, G. L. (2004) APE1 is the major 3’-phosphoglycolate activity in human cell extracts, Nucleic Acids Res., 32, 3531–3536.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Shida, T., Kaneda, K., Ogawa, T., and Sekiguchi, J. (1999) Abasic site recognition mechanism by the Escherichia coli exonuclease III, Nucleic Acids Symp. Ser., 23, 195196.Google Scholar
  40. 40.
    Rosenquist, T. A., Zaika, E., Fernandes, A. S., Zharkov, D. O., Miller, H., and Grollman, A. P. (2003) The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death, DNA Repair (Amsterdam), 2, 581591.Google Scholar
  41. 41.
    Wilson, S. H., and Kunkel, T. A. (2000) Passing the baton in base excision repair, Nature Struct. Biol., 7, 176–178.PubMedCrossRefGoogle Scholar
  42. 42.
    Fitzgerald, M. E., and Drohat, A. C. (2008) Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex, J. Biol. Chem., 283, 32680–32690.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hill, J. W., Hazra, T. K., Izumi, T., and Mitra, S. (2001) Stimulation of human 8-oxoguanine DNA glycosylase by APendonuclease: potential coordination of the initial steps in base excision repair, Nucleic Acids Res., 29, 430–438.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Vidal, A. E., Hickson, I. D., Boiteux, S., and Radicella, J. P. (2001) Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human APendonuclease: bypass of the APlyase activity step, Nucleic Acids Res., 29, 1285–1292.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hang, B., and Singer, B. (2003) Protein–protein interactions involving DNA glycosylases, Chem. Res. Toxicol., 16, 1181–1195.PubMedCrossRefGoogle Scholar
  46. 46.
    Sidorenko, V. S., Nevinsky, G. A., and Zharkov, D. O. (2007) Mechanism of interaction between human 8oxoguanine-DNA glycosylase and APendonuclease, DNA Repair (Amsterdam), 6, 317–328.CrossRefGoogle Scholar
  47. 47.
    Sidorenko, V. S., Nevinsky, G. A., and Zharkov, D. O. (2008) Specificity of stimulation of human 8-oxoguanineDNA glycosylase by APendonuclease, Biochem. Biophys. Res. Commun., 368, 175–179.PubMedCrossRefGoogle Scholar
  48. 48.
    Nazarkina, Z. K., Khodyreva, S. N., Marsin, S., Lavrik, O. I., and Radicella, J. P. (2007) XRCC1 interactions with base excision repair DNA intermediates, DNA Repair (Amsterdam), 6, 254–264.CrossRefGoogle Scholar
  49. 49.
    Sassa, A., Caglayan, M., Dyrkheeva, N. S., Beard, W. A., and Wilson, S. H. (2014) Base excision repair of tandem modifications in a methylated CpG dinucleotide, J. Biol. Chem., 289, 13996–4008.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Marenstein, D. R., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., Cunningham, R. P., and Teebor, G. W. (2003) Substrate specificity of human endonuclease III (hNTH1). Effect of human APE1 on hNTH1 activity, J. Biol. Chem., 278, 9005–9012.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang, H., Clendenin, W. M., Wong, D., Demple, B., Slupska, M. M., Chiang, J.-H., and Miller, J. H. (2001) Enhanced activity of adenine-DNA glycosylase by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch, Nucleic Acids Res., 29, 743–752.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bennet, R. A. O., Wilson, D. M., Wong, D., and Demple, B. (1997) Interaction of human apurinic endonuclease and DNA polymerase ß in the base excision repair pathway, Proc. Natl. Acad. Sci. USA, 94, 7166–7169.CrossRefGoogle Scholar
  53. 53.
    Liu, Y., Prasad, R., Beard, W. A., Kedar, P. S., Hou, E. W., Shock, D. D., and Wilson, S. H. (2007) Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase ß, J. Biol. Chem., 282, 13532–13541.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Singhal, R. K., Prasad, R., and Wilson, S. H. (1995) DNA polymerase ß conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extracts, J. Biol. Chem., 270, 949–957.PubMedCrossRefGoogle Scholar
  55. 55.
    Sobol, R. W., Horton, J. K., Kuhn, R., Gu, H., Singhal, R. K., Prasad, R., Rajewsky, K., and Wilson, S. H. (1996) Requirement of mammalian DNA polymerase-ß in baseexcision repair, Nature, 379, 183–186.PubMedCrossRefGoogle Scholar
  56. 56.
    Chen, D. S., Herman, T., and Demple, B. (1991) Two distinct human DNA diesterases that hydrolyze 3’-blocking deoxyribose fragments from oxidized DNA, Nucleic Acids Res., 19, 5907–5914.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Horton, J. K., Srivastava, D. K., Zmudzka, B. Z., and Wilson, S. H. (1995) Strategic down-regulation of DNA polymerase ß by antisense RNA sensitizes mammalian cells to specific DNA damaging agents, Nucleic Acids Res., 23, 3810–3815.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Abyzov, A., Uzun, A., Straußs, P. R., and Ilyin, V. A. (2008) An APendonuclease 1–DNA polymerase ß complex: theoretical prediction of interacting surfaces, PLoS Comput. Biol., 4, e1000066.CrossRefGoogle Scholar
  59. 59.
    Moor, N. A., Vasil’eva, I. A., Anarbaev, R. O., Antson, A. A., and Lavrik, O. I. (2015) Quantitative characterization of protein–protein complexes involved in base excision DNA repair, Nucleic Acids Res., 43, 6009–6022.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chagovetz, A. M., Sweasy, J. B., and Preston, B. D. (1997) Increased activity and fidelity of DNA polymerase ß on single-nucleotide gapped DNA, J. Biol. Chem., 272, 2750127504.CrossRefGoogle Scholar
  61. 61.
    Chou, K.-M., and Cheng, Y.-C. (2002) An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3’-mispaired DNA, Nature, 415, 655–659.PubMedCrossRefGoogle Scholar
  62. 62.
    Chou, K.-M., and Cheng, Y.-C. (2003) The exonuclease activity of human apurinic/apyrimidinic endonuclease (APE1): biochemical properties and inhibition by a natural dinucleotide P1, P4-Di (guanosine-5’) tetraphosphate (Gp4G), J. Biol. Chem., 278, 18289–18296.Google Scholar
  63. 63.
    Cistulli, C., Lavrik, O. I., Prasad, R., Hou, E., and Wilson, S. H. (2004) AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate, DNA Repair (Amsterdam), 3, 581–591.CrossRefGoogle Scholar
  64. 64.
    Dyrkheeva, N. S., Lomzov, A. A., Pyshnyi, D. V., Khodyreva, S. N., and Lavrik, O. I. (2006) Efficiency of exonucleolytic action of apurinic/apyrimidinic endonuclease 1 towards matched and mismatched dNMP at the 3’terminus of different oligomeric DNA structures correlates with thermal stability of DNA duplexes, Biochim. Biophys. Acta, 764, 699–706.CrossRefGoogle Scholar
  65. 65.
    Dyrkheeva, N. S., Khodyreva, S. N., Sukhanova, M. V., Safronov, I. V., Dezhurov, S. V., and Lavrik, O. I. (2006) 3’5’ exonuclease activity of human apurinic/apyrimidinic endonuclease 1 towards DNAs containing dNMP and their modified analogs at the 3’-end of single strand DNA break, Biochemistry (Moscow), 71, 200–210.CrossRefGoogle Scholar
  66. 66.
    Dyrkheeva, N. S., Khodyreva, N. S., and Lavrik, O. I (2007) Multifunctional human apurinic/apyrimidinic endonuclease 1: role of additional functions, Mol. Biol., 41, 402–416.CrossRefGoogle Scholar
  67. 67.
    Lebedeva, N. A., Khodyreva, S. N., Favre, A., and Lavrik, O. I. (2003) AP endonuclease 1 has no biologically significant 3’-5’ exonuclease activity, Biochem. Biophys. Res. Commun., 300, 182–187.PubMedCrossRefGoogle Scholar
  68. 68.
    Krutyakov, V. M. (2004) Antimutagenic role of autonomous 3’-5’ exonucleases, Mol. Biol., 38, 696–705.CrossRefGoogle Scholar
  69. 69.
    Burkovics, P., Szukacsov, V., Unk, I., and Haracska, L. (2006) Human Ape2 protein has a 3’-5’ exonuclease activity that acts preferentially on mismatched base pairs, Nucleic Acids Res., 34, 2508–2515.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lavrik, O. I., Prasad, R., Sobol, R. W., Horton, J. K., Ackerman, E. J., and Wilson, S. H. (2001) Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADPribose) polymerase-1, J. Biol. Chem., 276, 25541–25548.PubMedCrossRefGoogle Scholar
  71. 71.
    Dianova, I. I., Bohr, V. A., and Dianov, G. L. (2001) Interaction of human APendonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair, Biochemistry, 40, 1263912644.CrossRefGoogle Scholar
  72. 72.
    Ranalli, T. A., Tom, S., and Bambara, R. A. (2002) AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair, J. Biol. Chem., 277, 41715–41724.PubMedCrossRefGoogle Scholar
  73. 73.
    Kutuzov, M. M., Ilina, E. S., Sukhanova, M. V., Pyshnaya, I. A., Pyshnyi, D. V., Lavrik, O. I., and Khodyreva, S. N. (2011) Interaction of poly(ADP-ribose) polymerase 1 with apurinic/apyrimidinic sites within clustered DNA damage, Biochemistry (Moscow), 76, 147–156.CrossRefGoogle Scholar
  74. 74.
    Kutuzov, M. M., Khodyreva, S. N., Ilina, E. S., Sukhanova, M. V., Ame, J.-C., and Lavrik, O. I. (2015) Interaction of PARP-2 with AP site containing DNA, Biochimie, 112, 10–19.PubMedCrossRefGoogle Scholar
  75. 75.
    Prasad, R., Dyrkheeva, N., Williams, J., and Wilson, S. H. (2015) Mammalian base excision repair: functional partnership between PARP-1 and APE1 in APsite repair, PLoS One, 10, e0124269.Google Scholar
  76. 76.
    Mol, C. D., Izumi, T., Mitra, S., and Tainer, J. (2000) DNA bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination, Nature, 430, 451–455.Google Scholar
  77. 77.
    Freudenthal, B. D., Beard, W. A., Cuneo, M. J., Dyrkheeva, N. S., and Wilson, S. H. (2015) Capturing snapshots of APE1 processing DNA damage, Nat. Struct. Mol. Biol., 22, 924–931.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Strauss, P. R., Beard, W. A., Patterson, T. A., and Wilson, S. H. (1997) Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs–Haldane mechanism, J. Biol. Chem., 272, 1302–1307.PubMedCrossRefGoogle Scholar
  79. 79.
    Beloglazova, N. G., Kirpota, O. O., Starostin, K. V., Ishchenko, A. A., Yamkovoy, V. I., Zharkov, D. O., Douglas, K. T., and Nevinsky, G. A. (2004) Thermodynamic, kinetic and structural basis for recognition and repair of abasic sites in DNA by apurinic/apyrimidinic endonuclease from human placenta, Nucleic Acids Res., 32, 5134–5146.PubMedGoogle Scholar
  80. 80.
    Wilson, D. M., 3rd, Takeshita, M., Grollman, A. P., and Demple, B. (1995) Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA, J. Biol. Chem., 270, 16002–16007.PubMedCrossRefGoogle Scholar
  81. 81.
    Gorman, M. A., Morera, S., Rothwell, D. G., De La Fortelle, E., Mol, C. D., Tainer, J. A., Hickson, I. D., and Freemont, P. S. (1997) The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites, EMBO J., 19, 6548–6558.CrossRefGoogle Scholar
  82. 82.
    Beernink, P. T., Segelke, B. W., Hadi, M. Z., Erzberger, J. P., Wilson, D. M., and Rupp, B. (2001) Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism, J. Mol. Biol., 307, 10231034.Google Scholar
  83. 83.
    Barzilay, G., Walker, L. J., Robson, C. N., and Hickson, I. D. (1995) Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for APendonuclease and RNase H activity, Nucleic Acids Res., 23, 1544–1550.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mundle, S. T., Fattal, M. H., Melo, L. F., Coriolan, J. D., O’Regan, N. E., and Strauss, P. R. (2004) Novel role of tyrosine in catalysis by human A Pendonuclease 1, DNA Repair (Amsterdam), 3, 1447–1455.CrossRefGoogle Scholar
  85. 85.
    Kane, C. M., and Linn, S. (1981) Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells, J. Biol. Chem., 256, 3405–3414.PubMedGoogle Scholar
  86. 86.
    Masuda, Y., Bennet, R. A. O., and Demple, B. (1998) Rapid dissociation of human apurinic endonuclease (Ape1) from incised DNA induced by magnesium, J. Biol. Chem., 273, 30360–30365.PubMedCrossRefGoogle Scholar
  87. 87.
    Lipton, A. S., Heck, R. W., Primak, S., McNeill, D. R., Wilson, D. M., 3rd, and Ellis, P. D. (2008) Characterization of Mg2+ binding to the DNA repair protein apurinic/apyrimidinic endonuclease 1 via solid-state 25Mg NMR spectroscopy, J. Am. Chem. Soc., 130, 93329341.Google Scholar
  88. 88.
    Oezguen, N., Schein, C. H., Peddi, S. R., Power, T. D., Izumi, T., and Braun, W. A. (2007) “Moving metal mechanism” for substrate cleavage by the DNA repair endonuclease APE-1, Proteins, 68, 313–323.PubMedCrossRefGoogle Scholar
  89. 89.
    McNeill, D. R., Narayana, A., Wong, H.-K., and Wilson, D. M., 3rd (2004) Inhibition of Ape1 nuclease activity by lead, iron and cadmium, Toxicogenomics, 112, 799804.Google Scholar
  90. 90.
    Wilson, D. M., 3rd, Takeshita, M., and Demple, B. (1997) Abasic site binding by the human apurinic endonuclease, Ape, and determination of the DNA contact sites, Nucleic Acids Res., 25, 933–939.PubMedGoogle Scholar
  91. 91.
    Erzberger, J. P., Barsky, D., Scharer, O. D., Colvin, M. E., and Wilson, D. M. (1998) Elements in abasic site recognition by the major human and E. coli apurinic/apyrimidinic endonucleases, Nucleic Acids Res., 26, 2771–2778.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Cuniasse, P., Fazakerly, G. V., Guschlbauer, W., Kaplan, B. E., and Sowers, L. C. (1990) The abasic sites as a challenge to DNA polymerase. A nuclear magnetic resonance study of G, C and T opposite a model abasic site, J. Mol. Biol., 213, 303–314.PubMedCrossRefGoogle Scholar
  93. 93.
    David-Cordonnier, M. H., Cunniffe, S. M., Hickson, I. D., and O’Neill, P. (2002) Efficiency of incision of an AP site within clustered DNA damage by the major human AP endonuclease, Biochemistry, 41, 634–642.PubMedCrossRefGoogle Scholar
  94. 94.
    Starostenko, L. V., Maltseva, E. A., Lebedeva, N. A., Pestryakov, P. E., Lavrik, O. I., and Rechkunova, N. I. (2016) Interaction of nucleotide excision repair protein XPC–RAD23B with DNA-containing benzo[a]pyrenederived adduct and apurinic/apyrimidinic site within a cluster, Biochemistry (Moscow), 81, 350–360.CrossRefGoogle Scholar
  95. 95.
    Marenstein, D. R., Wilson, D. M., and Teebor, G. W. (2003) Human APendonuclease (APE1) demonstrates endonucleolytic activity against APsites in single-stranded DNA, DNA Repair (Amsterdam), 3, 527–533.CrossRefGoogle Scholar
  96. 96.
    Lowry, D. F., Hoyt, D. W., Khazi, F. A., Bagu, J., Lindsey, A. G., and Wilson, D. M. (2003) Investigation of the role of the histidine–aspartate pair in the human exonuclease IIIlike abasic endonuclease, Ape1, J. Mol. Biol., 329, 311–322.PubMedCrossRefGoogle Scholar
  97. 97.
    Wilson, D. M., 3rd (2005) Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures, J. Mol. Biol., 345, 1003–1014.PubMedCrossRefGoogle Scholar
  98. 98.
    Fan, J., Matsumoto, Y., and Wilson, D. M., 3rd (2006) Nucleotide sequence and DNA secondary structure, as well as replication protein A, modulate the single-stranded abasic endonuclease activity of APE1, J. Biol. Chem., 281, 3889–3898.PubMedGoogle Scholar
  99. 99.
    Berquist, B. R., McNeill, D. R., and Wilson, D. M., 3rd (2008) Characterization of abasic endonuclease activity of human Ape1 on alternative substrates, as well as effects of ATP and sequence context on APsite incision, J. Mol. Biol., 379, 17–27.Google Scholar
  100. 100.
    Tell, G., Quadrifoglio, F., Tiribelli, C., and Kelley, M. R. (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme, Antioxid. Redox Signal., 11, 571574.CrossRefGoogle Scholar
  101. 101.
    Thakur, S., Dhiman, M., Tell, G., and Mantha, A. K. (2015) A review on protein–protein interaction network of APE1/Ref-1 and its associated biological functions, Cell Biochem. Funct., 33, 101–112.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. S. Dyrkheeva
    • 1
  • N. A. Lebedeva
    • 1
    • 2
  • O. I. Lavrik
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Division of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Altai State UniversityBarnaulRussia

Personalised recommendations