Biochemistry (Moscow)

, Volume 81, Issue 9, pp 928–940 | Cite as

The road to optogenetics: Microbial rhodopsins

  • E. G. Govorunova
  • L. A. KoppelEmail author


Optogenetics technology (using light-sensitive microbial proteins to control animal cell physiology) is becoming increasingly popular in laboratories around the world. Among these proteins, particularly important are rhodopsins that transport ions across the membrane and are used in optogenetics to regulate membrane potential by light, mostly in neurons. Although rhodopsin ion pumps transport only one charge per captured photon, channelrhodopsins are capable of more efficient passive transport. In this review, we follow the history of channelrhodopsin discovery in flagellate algae and discuss the latest addition to the channelrhodopsin family, channels with anion, rather than cation, selectivity.


rhodopsins ion channels neurons membrane potential light 



anion channelrhodopsins


cation channelrhodopsins




Chlamydomonas reinhardtii ChR


Guillardia theta ACR


Parkinson’s disease


Proteomonas sulcata ACR


ventral tegmental area (of the midbrain)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deisseroth, K. (2015) Optogenetics: 10 years of microbial opsins in neuroscience, Nat. Neurosci., 18, 1213–1225.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Boyden, E. S. (2015) Optogenetics and the future of neuroscience, Nat. Neurosci., 18, 1200–1201.PubMedCrossRefGoogle Scholar
  3. 3.
    Zemelman, B. V., Lee, G. A., Ng, M., and Miesenbock, G. (2002) Selective photostimulation of genetically chARGed neurons, Neuron, 33, 15–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Banghart, M., Borges, K., Isacoff, E., Trauner, D., and Kramer, R. H. (2004) Light-activated ion channels for remote control of neuronal firing, Nat. Neurosci., 7, 13811386.CrossRefGoogle Scholar
  5. 5.
    McKenzie, C. K., Sanchez-Romero, I., and Janovjak, H. (2015) Flipping the photoswitch: ion channels under light control, Adv. Exp. Med. Biol., 869, 101–117.PubMedCrossRefGoogle Scholar
  6. 6.
    News Staff (2010) Insights of the decade. Stepping away from the trees for a look at the forest. Introduction, Science, 330, 1612–1613.CrossRefGoogle Scholar
  7. 7.
    Editorial (2011) Method of the Year 2010, Nat. Methods, 8, 1.Google Scholar
  8. 8.
    Deisseroth, K. (2011) Optogenetics, Nat. Methods, 8, 2629.CrossRefGoogle Scholar
  9. 9.
    Hegemann, P., and Nagel, G. (2013) From channelrhodopsins to optogenetics, EMBO Mol. Med., 5, 1–4.CrossRefGoogle Scholar
  10. 10.
    Yawo, H., Koizumi, A., and Hegemann, P. (2013) Adventure beyond borders of scientific fields with optogenetics, Neurosci. Res., 75, 1–2.PubMedCrossRefGoogle Scholar
  11. 11.
    Govorunova, E. G., Sineshchekov, O. A., Liu, X., Janz, R., and Spudich, J. L. (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics, Science, 349, 647–650.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Moglich, A., and Moffat, K. (2010) Engineered photoreceptors as novel optogenetic tools, Photochem. Photobiol. Sci., 9, 1286–1300.PubMedCrossRefGoogle Scholar
  13. 13.
    Shcherbakova, D. M., Shemetov, A. A., Kaberniuk, A. A., and Verkhusha, V. V. (2015) Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools, Annu. Rev. Biochem., 84, 519–550.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Bergeijk, P., Hoogenraad, C. C., and Kapitein, L. C. (2016) Right time, right place: probing the functions of organelle positioning, Trends Cell Biol., 26, 121–134.PubMedGoogle Scholar
  15. 15.
    Fraikin, G. Ya., Strakhovskaya, M. G., Belenikina, N. S., and Rubin, A. B. (2016) LOV and BLUF flavoproteins: regulatory photoreceptors of microorganisms and photosensory actuators in optogenetics systems, Moscow Univ. Biol. Sci. Bull., 1, 57–65.Google Scholar
  16. 16.
    Ernst, O. P., Lodowski, D. T., Elstner, M., Hegemann, P., Brown, L. S., and Kandori, H. (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev., 114, 126–163.PubMedGoogle Scholar
  17. 17.
    Sineshchekov, O. A., and Litvin, F. F. (1974) Phototaxis of microorganisms, its mechanism and relation to photosynthesis, Usp. Sovr. Biol., 78, 58–75.Google Scholar
  18. 18.
    Nultsch, W., and Hader, D.-P. (1988) Photomovement in motile microorganisms. II, Photochem. Photobiol., 47, 837869.CrossRefGoogle Scholar
  19. 19.
    Sineshchekov, O. A., Sineshchekov, V. A., and Litvin, F. F. (1978) Photoinduced bioelectric reactions in phototaxis of unicellular flagellated alga, Dokl. Akad. Nauk SSSR, 239, 471–474.Google Scholar
  20. 20.
    Litvin, F. F., Sineshchekov, O. A., and Sineshchekov, V. A. (1978) Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis, Nature, 271, 476–478.PubMedCrossRefGoogle Scholar
  21. 21.
    Harz, H., and Hegemann, P. (1991) Rhodopsin-regulated calcium currents in Chlamydomonas, Nature, 351, 489–491.CrossRefGoogle Scholar
  22. 22.
    Sineshchekov, O. A., Govorunova, E. G., Der, A., Keszthelyi, L., and Nultsch, W. (1992) Photoelectric responses in phototactic flagellated algae measured in cell suspension, J. Photochem. Photobiol. B Biol., 13, 119–134.CrossRefGoogle Scholar
  23. 23.
    Sineshchekov, O. A., and Govorunova, E. G. (2001) Electrical events in photomovements of green flagellated algae, in Comprehensive Series in Photosciences ( Hader, D.P., and Lebert, M., eds.) Elsevier, Amsterdam, pp. 245-280.Google Scholar
  24. 24.
    Sineshchekov, O. A., and Govorunova, E. G. (2001) Rhodopsin receptors of phototaxis in green flagellate algae, Biochemistry (Moscow), 66, 1300–1310.CrossRefGoogle Scholar
  25. 25.
    Foster, K.-W., Saranak, J., Patel, N., Zarrilli, G., Okabe, M., Kline, T., and Nakanishi, K. (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicelullar eukaryote Chlamydomonas, Nature, 311, 756–759.PubMedCrossRefGoogle Scholar
  26. 26.
    Sineshchekov, O. A., Jung, K.-H., and Spudich, J. L. (2002) Two rhodopsins mediate phototaxis to lowand high-intensity light in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 99, 8689–8694.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Suzuki, T., Yamasaki, K., Fujita, S., Oda, K., Iseki, M., Yoshida, K., Watanabe, M., Daiyasu, H., Toh, H., Asamizu, E., Tabata, S., Miura, K., Fukuzawa, H., Nakamura, S., and Takahashi, T. (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization, Biochem. Biophys. Res. Commun., 301, 711–717.PubMedCrossRefGoogle Scholar
  28. 28.
    Mittelmeier, T. M., Thompson, M. D., Ozturk, E., and Dieckmann, C. L. (2013) Independent localization of plasma membrane and chloroplast components during eyespot assembly, Eukaryot. Cell, 12, 1258–1270.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nagel, G., Mockel, B., Buldt, G., and Bamberg, E. (1995) Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping, FEBS Lett., 377, 263–266.PubMedCrossRefGoogle Scholar
  30. 30.
    Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A. M., Bamberg, E., and Hegemann, P. (2002) Channelrhodopsin-1: a light-gated proton channel in green algae, Science, 296, 2395–2398.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. (2003) Channelrhodopsin-2, a directly light-gated cationselective membrane channel, Proc. Natl. Acad. Sci. USA, 100, 13940–13945.CrossRefGoogle Scholar
  32. 32.
    Sineshchekov, O. A., Govorunova, E. G., and Spudich, J. L. (2009) Photosensory functions of channelrhodopsins in native algal cells, Photochem. Photobiol., 85, 556–563.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci., 8, 1263–1268.PubMedGoogle Scholar
  34. 34.
    Li, X., Gutierrez, D. V., Hanson, M. G., Han, J., Mark, M. D., Chiel, H., Hegemann, P., Landmesser, L. T., and Herlitze, S. (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin, Proc. Natl. Acad. Sci. USA, 102, 17816–17821.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Nagel, G., Brauner, M., Liewald, J. F., Adeishvili, N., Bamberg, E., and Gottschalk, A. (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses, Curr. Biol., 15, 2279–2284.PubMedCrossRefGoogle Scholar
  36. 36.
    Zeng, H., and Madisen, L. (2012) Mouse transgenic approaches in optogenetics, Prog. Brain. Res., 196, 193213.Google Scholar
  37. 37.
    Zhang, F., Prigge, M., Beyriere, F., Tsunoda, S. P., Mattis, J., Yizhar, O., Hegemann, P., and Deisseroth, K. (2008) Redshifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri, Nat. Neurosci., 11, 631–633.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Govorunova, E. G., Spudich, E. N., Lane, C. E., Sineshchekov, O. A., and Spudich, J. L. (2011) New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride, mBio, 2, e00115-00111.CrossRefGoogle Scholar
  39. 39.
    Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho, Y. K., Morimoto, T. K., Chuong, A. S., Carpenter, E. J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B. Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G. K., and Boyden, E. S. (2014) Independent optical excitation of distinct neural populations, Nat. Methods, 11, 338–346.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wen, L., Wang, H., Tanimoto, S., Egawa, R., Matsuzaka, Y., Mushiake, H., Ishizuka, T., and Yawo, H. (2010) Optocurrent-clamp actuation of cortical neurons using a strategically designed channelrhodopsin, PLoS One, 5, e12893.CrossRefGoogle Scholar
  41. 41.
    Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’ Shea, D. J., Sohal, V. S., Goshen, I., Finkelstein, J., Paz, J. T., Stehfest, K., Fudim, R., Ramakrishnan, C., Huguenard, J. R., Hegemann, P., and Deisseroth, K. (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction, Nature, 477, 171–178.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D., and Tsien, R. Y. (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation, Nat. Neurosci., 16, 1499–1508.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hight, A. E., Kozin, E. D., Darrow, K., Lehmann, A., Boyden, E., Brown, M. C., and Lee, D. J. (2015) Superior temporal resolution of Chronos versus Channelrhodopsin2 in an optogenetic model of the auditory brainstem implant, Hear Res., 322, 235–241.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kleinlogel, S., Feldbauer, K., Dempski, R. E., Fotis, H., Wood, P. G., Bamann, C., and Bamberg, E. (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+permeable channelrhodopsin CatCh, Nat. Neurosci., 14, 513–518.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang, F., Vierock, J., Yizhar, O., Fenno, L. E., Tsunoda, S., Kianianmomeni, A., Prigge, M., Berndt, A., Cushman, J., Polle, J., Magnuson, J., Hegemann, P., and Deisseroth, K. (2011) The microbial opsin family of optogenetic tools, Cell, 147, 1446–1457.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sineshchekov, O. A., Govorunova, E. G., Wang, J., and Spudich, J. L. (2012) Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4dehydroretinal, Biochemistry, 51, 4499–4506.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    AzimiHashemi, N., Erbguth, K., Vogt, A., Riemensperger, T., Rauch, E., Woodmansee, D., Nagpal, J., Brauner, M., Sheves, M., Fiala, A., Kattner, L., Trauner, D., Hegemann, P., Gottschalk, A., and Liewald, J. F. (2014) Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools, Nat. Commun., 5, 5810.PubMedCrossRefGoogle Scholar
  48. 48.
    Muller, M., Bamann, C., Bamberg, E., and Kuhlbrandt, W. (2011) Projection structure of channelrhodopsin-2 at 6 Å resolution by electron crystallography, J. Mol. Biol., 414, 86–95.PubMedCrossRefGoogle Scholar
  49. 49.
    Kato, H. E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., Hirata, K., Ito, J., Aita, Y., Tsukazaki, T., Hayashi, S., Hegemann, P., Maturana, A. D., Ishitani, R., Deisseroth, K., and Nureki, O. (2012) Crystal structure of the channelrhodopsin light-gated cation channel, Nature, 482, 369–374.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., and Deisseroth, K. (2011) Optogenetics in neural systems, Neuron, 71, 9–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Mattis, J., Tye, K. M., Ferenczi, E. A., Ramakrishnan, C., O’ Shea, D. J., Prakash, R., Gunaydin, L. A., Hyun, M., Fenno, L. E., Gradinaru, V., Yizhar, O., and Deisseroth, K. (2011) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins, Nat. Methods, 9, 159–172.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lin, J. Y. (2010) A user’s guide to channelrhodopsin variants: features, limitations and future developments, Exp. Physiol., 96, 19–25.PubMedGoogle Scholar
  53. 53.
    Spudich, J. L., Sineshchekov, O. A., and Govorunova, E. G. (2014) Mechanism divergence in microbial rhodopsins, Biochim. Biophys. Acta, 1837, 546–552.PubMedCrossRefGoogle Scholar
  54. 54.
    Lorenz-Fonfria, V. A., and Heberle, J. (2014) Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel, Biochim. Biophys. Acta, 1837, 626–642.PubMedCrossRefGoogle Scholar
  55. 55.
    Schneider, F., Grimm, C., and Hegemann, P. (2015) Biophysics of channelrhodopsin, Annu. Rev. Biophys., 44, 167–186.PubMedCrossRefGoogle Scholar
  56. 56.
    Rein, M. L., and Deussing, J. M. (2011) The optogenetic (r)evolution, Mol. Genet. Genom., 28, 95–109.Google Scholar
  57. 57.
    Carter, M. E., and De Lecea, L. (2011) Optogenetic investigation of neural circuits in vivo, Trends Mol. Med., 17, 197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jerome, J., and Heck, D. H. (2011) The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity, Front. Syst. Neurosci., 5, 95.PubMedPubMedCentralGoogle Scholar
  59. 59.
    G, N., Tan, A., Farhatnia, Y., Rajadas, J., Hamblin, M. R., Khaw, P. T., and Seifalian, A. M. (2013) Channelrhodopsins: visual regeneration and neural activation by a light switch, New Biotechnol., 30, 461–474.CrossRefGoogle Scholar
  60. 60.
    Adamantidis, A. R., Zhang, F., De Lecea, L., and Deisseroth, K. (2014) Optogenetics: opsins and optical interfaces in neuroscience, Cold Spring Harbor Protoc., 2014, 815–822.Google Scholar
  61. 61.
    Zhao, M., Alleva, R., Ma, H., Daniel, A. G., and Schwartz, T. H. (2015) Optogenetic tools for modulating and probing the epileptic network, Epilepsy Res., 116, 15–26.PubMedCrossRefGoogle Scholar
  62. 62.
    Bass, C. E., Grinevich, V. P., Vance, Z. B., Sullivan, R. P., Bonin, K. D., and Budygin, E. A. (2010) Optogenetic control of striatal dopamine release in rats, J. Neurochem., 114, 1344–1352.Google Scholar
  63. 63.
    Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., and Kreitzer, A. C. (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry, Nature, 466, 622–626.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Maurice, N., Liberge, M., Jaouen, F., Ztaou, S., Hanini, M., Camon, J., Deisseroth, K., Amalric, M., Kerkerian- Le Goff, L., and Beurrier, C. (2015) Striatal cholinergic interneurons control motor behavior and basal ganglia function in experimental parkinsonism, Cell Rep., 13, 657–666.PubMedCrossRefGoogle Scholar
  65. 65.
    Bordia, T., Perez, X. A., Heiss, J. E., Zhang, D., and Quik, M. (2016) Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias, Neurobiol. Dis., 91, 47–58.PubMedCrossRefGoogle Scholar
  66. 66.
    Vazey, E. M., and Aston-Jones, G. (2013) New tricks for old dogmas: optogenetic and designer receptor insights for Parkinson’s disease, Brain Res., 1511, 153–163.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mosolov, S. N. (2012) Current biological hypotheses of recurrent depression, Zh. Nevrol. Psikhiatr. im. S. S. Korsakova, 11, 29–40.Google Scholar
  68. 68.
    Lobo, M. K., Nestler, E. J., and Covington, H. E.. (2012) Potential utility of optogenetics in the study of depression, Biol. Psychiatry, 71, 1068–1074.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Covington, H. E., Lobo, M. K., Maze, I., Vialou, V., Hyman, J. M., Zaman, S., LaPlant, Q., Mouzon, E., Ghose, S., Tamminga, C. A., Neve, R. L., Deisseroth, K., and Nestler, E. J. (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex, J. Neurosci., 30, 16082–16090.Google Scholar
  70. 70.
    Tye, K. M., Mirzabekov, J. J., Warden, M. R., Ferenczi, E. A., Tsai, H. C., Finkelstein, J., Kim, S. Y., Adhikari, A., Thompson, K. R., Andalman, A. S., Gunaydin, L. A., Witten, I. B., and Deisseroth, K. (2013) Dopamine neurons modulate neural encoding and expression of depressionrelated behaviour, Nature, 493, 537–541.PubMedCrossRefGoogle Scholar
  71. 71.
    Chaudhury, D., Walsh, J. J., Friedman, A. K., Juarez, B., Ku, S. M., Koo, J. W., Ferguson, D., Tsai, H. C., Pomeranz, L., Christoffel, D. J., Nectow, A. R., Ekstrand, M., Domingos, A., Mazei-Robison, M. S., Mouzon, E., Lobo, M. K., Neve, R. L., Friedman, J. M., Russo, S. J., Deisseroth, K., Nestler, E. J., and Han, M. H. (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons, Nature, 493, 532–536.PubMedCrossRefGoogle Scholar
  72. 72.
    Lobo, M. K., Covington, H. E., Chaudhury, D., Friedman, A. K., Sun, H., Damez-Werno, D., Dietz, D. M., Zaman, S., Koo, J. W., Kennedy, P. J., Mouzon, E., Mogri, M., Neve, R. L., Deisseroth, K., Han, M. H., and Nestler, E. J. (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward, Science, 330, 385–390.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Stefanik, M. T., Moussawi, K., Kupchik, Y. M., Smith, K. C., Miller, R. L., Huff, M. L., Deisseroth, K., Kalivas, P. W., and LaLumiere, R. T. (2013) Optogenetic inhibition of cocaine seeking in rats, Addict. Biol., 18, 50–53.PubMedCrossRefGoogle Scholar
  74. 74.
    Thannickal, T. C. (2009) A decade of hypocretin/orexin: accomplishments in sleep medicine, Sleep Med. Rev., 13, 5–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K., and De Lecea, L. (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons, Nature, 450, 420–424.PubMedCrossRefGoogle Scholar
  76. 76.
    De Lecea, L. (2015) Optogenetic control of hypocretin (orexin) neurons and arousal circuits, Curr. Top. Behav. Neurosci., 25, 367–378.PubMedCrossRefGoogle Scholar
  77. 77.
    Gent, T. C., and Adamantidis, A. R. (2015) Optogenetic dissection of sleep-wake circuits in the brain, in Orexin and Sleep: Molecular, Functional and Clinical Aspects ( Sakurai, T., Pandi-Perumal, S. R., and Monti, J. M., eds.) Springer International Publishing, New York, pp. 93-105.Google Scholar
  78. 78.
    Omokawa, M., Ayabe, T., Nagai, T., Imanishi, A., Omokawa, A., Nishino, S., Sagawa, Y., Shimizu, T., and Kanbayashi, T. (2016) Decline of CSF orexin (hypocretin) levels in Prader–Willi syndrome, Am. J. Med. Genet. A, 170, 1181–1186.CrossRefGoogle Scholar
  79. 79.
    Lagerlof, O., Slocomb, J. E., Hong, I., Aponte, Y., Blackshaw, S., Hart, G. W., and Huganir, R. L. (2016) The nutrient sensor OGT in PVN neurons regulates feeding, Science, 351, 1293–1296.PubMedCrossRefGoogle Scholar
  80. 80.
    Rosenthal, N. E., Sack, D. A., Gillin, J. C., Lewy, A. J., Goodwin, F. K., Davenport, Y., Mueller, P. S., Newsome, D. A., and Wehr, T. A. (1984) Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy, Arch. Gen. Psychiatry, 41, 72–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Terman, M., and Terman, J. S. (2005) Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects, CNS Spectr., 10, 647–663; quiz 672.PubMedGoogle Scholar
  82. 82.
    Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., and Tonegawa, S. (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall, Nature, 484, 381–385.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ramirez, S., Liu, X., Lin, P. A., Suh, J., Pignatelli, M., Redondo, R. L., Ryan, T. J., and Tonegawa, S. (2013) Creating a false memory in the hippocampus, Science, 341, 387–391.PubMedCrossRefGoogle Scholar
  84. 84.
    Redondo, R. L., Kim, J., Arons, A. L., Ramirez, S., Liu, X., and Tonegawa, S. (2014) Bidirectional switch of the valence associated with a hippocampal contextual memory engram, Nature, 513, 426–430.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Johansen, J. P., Wolff, S. B., Luthi, A., and LeDoux, J. E. (2012) Controlling the elements: an optogenetic approach to understanding the neural circuits of fear, Biol. Psychiatry, 71, 1053–1060.PubMedCrossRefGoogle Scholar
  86. 86.
    Goshen, I. (2014) The optogenetic revolution in memory research, Trends Neurosci., 37, 511–522.PubMedCrossRefGoogle Scholar
  87. 87.
    Ramirez, S., Liu, X., MacDonald, C. J., Moffa, A., Zhou, J., Redondo, R. L., and Tonegawa, S. (2015) Activating positive memory engrams suppresses depression-like behaviour, Nature, 522, 335–339.PubMedCrossRefGoogle Scholar
  88. 88.
    Alilain, W. J., Li, X., Horn, K. P., Dhingra, R., Dick, T. E., Herlitze, S., and Silver, J. (2008) Light-induced rescue of breathing after spinal cord injury, J. Neurosci., 28, 1186211870.Google Scholar
  89. 89.
    Darrow, K. N., Slama, M. C., Kozin, E. D., Owoc, M., Hancock, K., Kempfle, J., Edge, A., Lacour, S., Boyden, E., Polley, D., Brown, M. C., and Lee, D. J. (2015) Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways, Brain Res., 1599, 44–56.PubMedCrossRefGoogle Scholar
  90. 90.
    Wu, Y., Li, S. S., Jin, X., Cui, N., Zhang, S., and Jiang, C. (2015) Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle, Vascul. Pharmacol., 71, 192–200.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sakar, M. S., Neal, D., Boudou, T., Borochin, M. A., Li, Y., Weiss, R., Kamm, R. D., Chen, C. S., and Asada, H. H. (2012) Formation and optogenetic control of engineered 3D skeletal muscle bioactuators, Lab Chip, 12, 4976–4985.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Arrenberg, A. B., Stainier, D. Y., Baier, H., and Huisken, J. (2010) Optogenetic control of cardiac function, Science, 330, 971–974.PubMedCrossRefGoogle Scholar
  93. 93.
    Bruegmann, T., Malan, D., Hesse, M., Beiert, T., Fuegemann, C. J., Fleischmann, B. K., and Sasse, P. (2010) Optogenetic control of heart muscle in vitro and in vivo, Nat. Methods, 7, 897–900.PubMedCrossRefGoogle Scholar
  94. 94.
    Gourine, A. V., Kasymov, V., Marina, N., Tang, F., Figueiredo, M. F., Lane, S., Teschemacher, A. G., Spyer, K. M., Deisseroth, K., and Kasparov, S. (2010) Astrocytes control breathing through pH-dependent release of ATP, Science, 329, 571–575.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Reinbothe, T. M., Safi, F., Axelsson, A. S., Mollet, I. G., and Rosengren, A. H. (2014) Optogenetic control of insulin secretion in intact pancreatic islets with beta-cellspecific expression of Channelrhodopsin-2, Islets, 6, e28095.CrossRefGoogle Scholar
  96. 96.
    Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsinlike protein from the purple membrane of Halobacterium halobium, Nature, 233, 149–152.Google Scholar
  97. 97.
    Lozier, R. H., Bogomolni, R. A., and Stoeckenius, W. (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium, Biophys. J., 15, 955–962.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Balashov, S. P., and Litvin, F. F. (1985) Photochemical Transformations of Bacteriorhodopsin [in Russian], MSU, Moscow.Google Scholar
  99. 99.
    Drachev, L. A., Kaulen, A. D., Ostroumov, S. A., and Skulachev, V. P. (1974) Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane, FEBS Lett., 39, 43–45.PubMedCrossRefGoogle Scholar
  100. 100.
    Skulachev, V. P. (1976) Conversion of light energy into electric energy by bacteriorhodopsin, FEBS Lett., 64, 23–25.PubMedCrossRefGoogle Scholar
  101. 101.
    Litvin, F. F., Balashov, S. P., and Sineshchekov, V. A. (1975) Investigation of primary photochemical conversions of bacteriorhodopsin in purple membranes and cells of Halobacterium halobium by low-temperature spectrophotometry method, Bioorg. Khim., 1, 1767–1777.Google Scholar
  102. 102.
    Lukashev, E. P., Vozary, E., Kononenko, A. A., and Rubin, A. B. (1980) Electric field promotion of the bacteriorhodopsin BR570 to BR412 photoconversion in films of Halobacterium halobium purple membranes, Biochim. Biophys. Acta, 592, 258–266.PubMedCrossRefGoogle Scholar
  103. 103.
    Ovchinnikov, Y. A., Abdulaev, N. G., Feigina, M. Y., Kiselev, A. V., and Lobanov, N. A. (1979) The structural basis of the functioning of bacteriorhodopsin: an overview, FEBS Lett., 100, 219–224.PubMedCrossRefGoogle Scholar
  104. 104.
    Mukohata, Y., Ihara, K., Tamura, T., and Sugiyama, Y. (1999) Halobacterial rhodopsins, J. Biochem., 125, 649657.Google Scholar
  105. 105.
    Beja, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S., Gates, C. M., Feldman, R. A., Spudich, J. L., Spudich, E. N., and DeLong, E. F. (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea, Science, 289, 1902–1906.PubMedCrossRefGoogle Scholar
  106. 106.
    Waschuk, S. A., Bezerra, A. G. J., Shi, L., and Brown, L. S. (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote, Proc. Natl. Acad. Sci. USA, 102, 6879–6883.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Tsunoda, S. P., Ewers, D., Gazzarrini, S., Moroni, A., Gradmann, D., and Hegemann, P. (2006) H+-pumping rhodopsin from the marine alga Acetabularia, Biophys. J., 91, 1471–1479.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chow, B. Y., Han, X., Dobry, A. S., Qian, X., Chuong, A. S., Li, M., Henninger, M. A., Belfort, G. M., Lin, Y., Monahan, P. E., and Boyden, E. S. (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps, Nature, 463, 98–102.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Schobert, B., and Lanyi, J. K. (1982) Halorhodopsin is a light-driven chlori De pump, J. Biol. Chem., 257, 1030610313.Google Scholar
  110. 110.
    Gradinaru, V., Thompson, K. R., and Deisseroth, K. (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications, Brain Cell Biol., 36, 129–139.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kokaia, M., Andersson, M., and Ledri, M. (2013) An optogenetic approach in epilepsy, Neuropharmacology, 69, 89–95.PubMedCrossRefGoogle Scholar
  112. 112.
    Krook-Magnuson, E., Armstrong, C., Oijala, M., and Soltesz, I. (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy, Nat. Commun., 4, 1376.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Paz, J. T., and Huguenard, J. R. (2015) Optogenetics and epilepsy: past, present and future, Epilepsy Curr., 15, 34–38.PubMedCrossRefGoogle Scholar
  114. 114.
    Ji, Z. G., and Wang, H. (2015) Optogenetic control of astrocytes: is it possible to treat astrocyte-related epilepsy? Brain Res. Bull., 110, 20–25.Google Scholar
  115. 115.
    Liske, H., Towne, C., Anikeeva, P., Zhao, S., Feng, G., Deisseroth, K., and Delp, S. (2013) Optical inhibition of motor nerve and muscle activity in vivo, Muscle Nerve, 47, 916–921.PubMedCrossRefGoogle Scholar
  116. 116.
    Tsunematsu, T., Kilduff, T. S., Boyden, E. S., Takahashi, S., Tominaga, M., and Yamanaka, A. (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice, J. Neurosci., 31, 10529–10539.Google Scholar
  117. 117.
    Shi, Y. F., Han, Y., Su, Y. T., Yang, J. H., and Yu, Y. Q. (2015) Silencing of cholinergic basal forebrain neurons using archaerhodopsin prolongs slow-wave sleep in mice, PLoS One, 10, e0130130.Google Scholar
  118. 118.
    Entcheva, E., and Bub, G. (2016) All-optical control of cardiac excitation: combined high-resolution optogenetic actuation and optical mapping, J. Physiol., 594, 25032510.Google Scholar
  119. 119.
    Wietek, J., Wiegert, J. S., Adeishvili, N., Schneider, F., Watanabe, H., Tsunoda, S. P., Vogt, A., Elstner, M., Oertner, T. G., and Hegemann, P. (2014) Conversion of channelrhodopsin into a light-gated chloride channel, Science, 344, 409–412.PubMedCrossRefGoogle Scholar
  120. 120.
    Wietek, J., Beltramo, R., Scanziani, M., Hegemann, P., Oertner, T. G., and Simon Wiegert, J. (2015) An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo, Sci. Rep., 5, 14807.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Berndt, A., Lee, S. Y., Ramakrishnan, C., and Deisseroth, K. (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel, Science, 344, 420–424.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sineshchekov, O. A., Govorunova, E. G., Jung, K.-H., Zauner, S., Maier, U.-G., and Spudich, J. L. (2005) Rhodopsin-mediated photoreception in cryptophyte flagellates, Biophys. J., 89, 4310–4319.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I., Thompson, K. R., and Deisseroth, K. (2010) Molecular and cellular approaches for diversifying and extending optogenetics, Cell, 141, 154–165.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Curtis, B. A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., Arias, M. C., Ball, S. G., Gile, G. H., Hirakawa, Y., Hopkins, J. F., Kuo, A., Rensing, S. A., Schmutz, J., Symeonidi, A., Elias, M., Eveleigh, R. J., Herman, E. K., Klute, M. J., Nakayama, T., Obornik, M., Reyes-Prieto, A., Armbrust, E. V., Aves, S. J., Beiko, R. G., Coutinho, P., Dacks, J. B., Durnford, D. G., Fast, N. M., Green, B. R., Grisdale, C. J., Hempel, F., Henrissat, B., Hoppner, M. P., Ishida, K., Kim, E., Koreny, L., Kroth, P. G., Liu, Y., Malik, S. B., Maier, U. G., McRose, D., Mock, T., Neilson, J. A., Onodera, N. T., Poole, A. M., Pritham, E. J., Richards, T. A., Rocap, G., Roy, S. W., Sarai, C., Schaack, S., Shirato, S., Slamovits, C. H., Spencer, D. F., Suzuki, S., Worden, A. Z., Zauner, S., Barry, K., Bell, C., Bharti, A. K., Crow, J. A., Grimwood, J., Kramer, R., Lindquist, E., Lucas, S., Salamov, A., McFadden, G. I., Lane, C. E., Keeling, P. J., Gray, M. W., Grigoriev, I. V., and Archibald, J. M. (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs, Nature, 492, 59–65.PubMedCrossRefGoogle Scholar
  125. 125.
    Slamovits, C. H., Okamoto, N., Burri, L., James, E. R., and Keeling, P. J. (2011) A bacterial proteorhodopsin proton pump in marine eukaryotes, Nat. Commun., 2, 183.PubMedCrossRefGoogle Scholar
  126. 126.
    Feldbauer, K., Zimmermann, D., Pintschovius, V., Spitz, J., Bamann, C., and Bamberg, E. (2009) Channelrhodopsin-2 is a leaky proton pump, Proc. Natl. Acad. Sci. USA, 106, 12317–12322.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. (2002) Molecular structure and physiological function of chloride channels, Physiol. Rev., 82, 503–568.PubMedCrossRefGoogle Scholar
  128. 128.
    Sineshchekov, O. A., Govorunova, E. G., Li, H., and Spudich, J. L. (2015) Gating mechanisms of a natural anion channelrhodopsin, Proc. Natl. Acad. Sci. USA, 112, 14236–14241.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sineshchekov, O. A., Li, H., Govorunova, E. G., and Spudich, J. L. (2016) Photochemical reaction cycle transitions during anion channelrhodopsin gating, Proc. Natl. Acad. Sci. USA, accepted.Google Scholar
  130. 130.
    Berndt, A., Lee, S. Y., Wietek, J., Ramakrishnan, C., Steinberg, E. E., Rashid, A. J., Kim, H., Park, S., Santoro, A., Frankland, P. W., Iyer, S. M., Pak, S., AhrlundRichter, S., Delp, S. L., Malenka, R. C., Josselyn, S. A., Carlen, M., Hegemann, P., and Deisseroth, K. (2015) Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity, Proc. Natl. Acad. Sci. USA, 113, 822–829.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Dolgikh, D. A., Malyshev, A. Y., Salozhin, S. V., Nekrasova, O. V., Petrovskaya, L. E., Roshchin, M. V., Borodinova, A. A., Feldman, T. B., Balaban, P. M., Kirpichnikov, M. P., and Ostrovsky, M. A. (2015) Anionselective channelrhodopsin expressed in neuronal cell culture and in vivo in murine brain: light-induced inhibition of generation of action potentials, Dokl. Biochem. Biophys., 465, 737–740.CrossRefGoogle Scholar
  132. 132.
    Mahn, M., Prigge, M., Ron, S., Levy, R., and Yizhar, O. (2016) Biophysical constraints of optogenetic inhibition at presynaptic terminals, Nat. Neurosci., 19, 554–556.PubMedCrossRefGoogle Scholar
  133. 133.
    Govorunova, E. G., Sineshchekov, O. A., and Spudich, J. L. (2016) Proteomonas sulcata ACR1: A fast anion channelrhodopsin, Photochem. Photobiol., 92, 257–263.CrossRefGoogle Scholar
  134. 134.
    Wietek, J., Broser, M., Krause, B. S., and Hegemann, P. (2016) Identification of a natural green light absorbing chloride conducting channelrhodopsin from Proteomonas sulcata, J. Biol. Chem., 291, 4121–4127.Google Scholar
  135. 135.
    Guiry, M. D. (2012) How many species of algae are there? J. Phycol., 48, 1057–1063.Google Scholar
  136. 136.
    Sidor, M. M. (2012) Psychiatry’s age of enlightenment: optogenetics and the discovery of novel targets for the treatment of psychiatric disorders, J. Psych. Neurosci., 37, 4–6.Google Scholar
  137. 137.
    Chow, B. Y., and Boyden, E. S. (2013) Optogenetics and translational medicine, Sci. Transl. Med., 5, 177ps175.Google Scholar
  138. 138.
    Williams, J. C., and Denison, T. (2013) From optogenetic technologies to neuromodulation therapies, Sci. Transl. Med., 5, 177ps176.CrossRefGoogle Scholar
  139. 139.
    Mace, E., Caplette, R., Marre, O., Sengupta, A., Chaffiol, A., Barbe, P., Desrosiers, M., Bamberg, E., Sahel, J. A., Picaud, S., Duebel, J., and Dalkara, D. (2015) Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice, Mol. Ther., 23, 7–16.PubMedCrossRefGoogle Scholar
  140. 140.
    Kirpichnikov, M. P., and Ostrovskiy, M. A. (2015) Optogenetics and prosthetic treatment of retinal degeneration, Vestn. Oftalmol., 131, 99–111.PubMedCrossRefGoogle Scholar
  141. 141.
    Boyle, P. M., Karathanos, T. V., and Trayanova, N. A. (2015) “Beauty is a light in the heart”: the transformative potential of optogenetics for clinical applications in cardiovascular medicine, Trends Cardiovasc. Med., 25, 73–81.PubMedCrossRefGoogle Scholar
  142. 142.
    Jorgenson, L. A., Newsome, W. T., Anderson, D. J., Bargmann, C. I., Brown, E. N., Deisseroth, K., Donoghue, J. P., Hudson, K. L., Ling, G. S., MacLeish, P. R., Marder, E., Normann, R. A., Sanes, J. R., Schnitzer, M. J., Sejnowski, T. J., Tank, D. W., Tsien, R. Y., Ugurbil, K., and Wingfield, J. C. (2015) The BRAIN Initiative: developing technology to catalyse neuroscience discovery, Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20140164.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversitySchool of BiologyMoscowRussia
  2. 2.University of Texas Health Science Center at HoustonMcGovern Medical SchoolHoustonUSA

Personalised recommendations