Biochemistry (Moscow)

, Volume 81, Issue 9, pp 913–927 | Cite as

Role of ceramide in apoptosis and development of insulin resistance

  • D. I. KuzmenkoEmail author
  • T. K. Klimentyeva


This review presents data on the functional biochemistry of ceramide, one of the key sphingolipids with properties of a secondary messenger. Molecular mechanisms of the involvement of ceramide in apoptosis in pancreatic β-cells and its role in the formation of insulin resistance in pathogenesis of type 2 diabetes are reviewed. One of the main predispositions for the development of insulin resistance and diabetes is obesity, which is associated with ectopic fat deposition and significant increase in intracellular concentrations of cytotoxic ceramides. A possible approach to the restoration of tissue sensitivity to insulin in type 2 diabetes based on selective reduction of the content of cytotoxic ceramides is discussed.


ceramide sphingolipids apoptosis mediator insulin resistance diabetes 



apoptotic protease activating factor 1


B-cell lymphoma 2 protein


ceramide-activated protein kinase


ceramide-activated protein phosphatase


c-Jun transcription factor


cysteine-rich domain




endoplasmic reticulum


extracellular signal-regulated kinase 1/2


fatty acid


Fas/Apo-1-associated with death domain


factor associated with neutral sphingomyelinase activation




forkhead box protein O1


glucose transporter 4


reduced glutathione


glycogen synthase kinase 3






inducible nitric oxide synthase


insulin receptor substrate 1


c-Jun N-terminal kinase


kinase suppressor of Ras


mitogen-activated protein kinase


mixed lineage kinase 3


messenger RNA


nuclear factor kappa B


nitric oxide


3-phosphoinositide-dependent protein kinase 1


pancreatic and duodenal homeobox gene 1


pleckstrin homology domain


phosphatidylinositol 3kinase


protein kinase B


protein kinase C


protein phosphatase 1


protein phosphatase 2A


phosphatidylinositol (4,5)-bisphosphate


phosphatidylinositol (3,4,5)-trisphosphate


retinoblastoma protein


reactive nitrogen species


reactive oxygen species


stress-activated protein kinase








tumor necrosis factor-α


tumor necrosis factor receptor


TNF receptor-associated death domain protein


unfolded protein response


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Merrill, A. H., Schmelz, E. M., Wang, E., Dillehay, D. L., Rice, L. G., Meredith, F., and Riley, R. T. (1997) Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets, J. Nutr., 127, 830S-833S.Google Scholar
  2. 2.
    Huwiler, A., Kolter, T., Pfeilschifter, J., and Sandhoff, K. (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling, Biochim. Biophys. Acta, 1485, 63–99.PubMedCrossRefGoogle Scholar
  3. 3.
    Colombaionia, L., and Garcia-Gilb, M. (2004) Sphingolipid metabolites in neural signaling and function, Brain Res. Rev., 46, 328–355.CrossRefGoogle Scholar
  4. 4.
    Hannun, Y. A., Loomis, C. R., Merrill, A. H., and Bell, R. M. (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets, J. Biol. Chem., 261, 12604–12609.PubMedGoogle Scholar
  5. 5.
    Hannun, Y. A. (1994) The sphingomyelin cycle and the second messenger function of ceramide, J. Biol. Chem., 269, 3125–3128.PubMedGoogle Scholar
  6. 6.
    Okazaki, T., Bell, R. M., and Hannun, Y. A. (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation, J. Biol. Chem., 264, 19076–19080.PubMedGoogle Scholar
  7. 7.
    Ohanian, J., and Ohanian, V. (2001) Sphingolipids in mammalian cell signaling, Cell. Mol. Life Sci., 58, 20532068.CrossRefGoogle Scholar
  8. 8.
    Hannun, Y. A., and Bell, R. M. (1989) Regulation of protein kinase C by sphingosine and lysosphingolipids, Clin. Chim. Acta, 185, 333–345.PubMedCrossRefGoogle Scholar
  9. 9.
    Marchesini, N., and Hannun, Y. A. (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation, Biochem. Cell Biol., 82, 27–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Gault, C. R., Obeid, L. M., and Hannun, Y. A. (2010) An overview of sphingolipid metabolism: from synthesis to breakdown, Adv. Exp. Med. Biol., 688, 1–23.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pettus, B. J., Chalfant, Ch. E., and Hannun, Y. A. (2002) Ceramide in apoptosis: an overview and current perspectives, Biochim. Biophys. Acta, 1585, 114–125.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu, B. X., Rajagopalan, V., Roddy, P. L., Clarke, C. J., and Hannun, Y. A. (2010) Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5, J. Biol. Chem., 285, 17993–18002.Google Scholar
  13. 13.
    Gatt, S., Barenholz, Y., and Roitman, A. (1966) Isolation of rat brain lecithinase-A, specific for the alpha’-position of lecithin, Biochem. Biophys. Res. Commun., 24, 69–72.Google Scholar
  14. 14.
    Sawada, M., Nakashima, S., Kiyono, T., Yamada, J., Hara, S., Nakagawa, M., Shinoda, J., and Sakai, N. (2002) Acid sphingomyelinase activation requires caspase8 but not p53 nor reactive oxygen species during Fasinduced apoptosis in human glioma cells, Exp. Cell Res., 273, 157–168.PubMedCrossRefGoogle Scholar
  15. 15.
    Rotolo, J., Zhang, J., Donepudi, M., Lee, H., Fuks, Z., and Kolesnick, R. (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling, J. Biol. Chem., 280, 26425–26434.PubMedCrossRefGoogle Scholar
  16. 16.
    Zeidan, Y. H., and Hannun, Y. A. (2007) Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation, J. Biol. Chem., 282, 11549–11561.PubMedCrossRefGoogle Scholar
  17. 17.
    Hannun, Y. A., and Obeid, L. M. (2008) Principles of bioactive lipid signaling: lessons from sphingolipids, Nature, 9, 139–150.Google Scholar
  18. 18.
    Castillo, S. S., Levy, M., Thaikoottathil, J. V., and Goldkorn, T. (2007) Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells, Exp. Cell Res., 313, 2680–2686.PubMedCrossRefGoogle Scholar
  19. 19.
    Parent, N., Scherer, M., Liebisch, G., Schmitz, G., and Bertrand, R. (2011) Protein kinase C-delta isoform mediates lysosome labilization in DNA damage-induced apoptosis, Int. J. Oncol., 38, 313–324.PubMedGoogle Scholar
  20. 20.
    Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E. H., Fuks, Z., and Kolesnick, R. (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis, Cell, 86, 189–199.PubMedCrossRefGoogle Scholar
  21. 21.
    Paris, F., Grassme, H., Cremesti, A., Zager, J., Fong, Y., Haimovitz-Friedman, A., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001) Natural ceramide reverses Fas resistance of acid sphingomyelinase(–/–) hepatocytes, J. Biol. Chem., 276, 8297–8305.PubMedCrossRefGoogle Scholar
  22. 22.
    Gulbins, E., and Grassme, H. (2002) Ceramide and cell death receptor clustering, Biochim. Biophys. Acta, 1585, 139–145.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsukamoto, S., Hirotsu, K., Kumazoe, M., Goto, Y., Sugihara, K., Suda, T., Tsurudome, Y., Suzuki, T., Yamashita, S., Kim, Y., Huang, Y., Yamada, K., and Tachibana, H. (2012) Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase C delta and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells, Biochem. J., 443, 525–534.PubMedCrossRefGoogle Scholar
  24. 24.
    Tirodkar, T. S., and Voelkel-Johnson, C. (2012) Sphingolipids in apoptosis, Exp. Oncol., 34, 231–242.PubMedGoogle Scholar
  25. 25.
    Schneider, P. B., and Kennedy, E. P. (1967) Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann–Pick disease, J. Lipid Res., 8, 202–209.PubMedGoogle Scholar
  26. 26.
    Tani, M., and Hannun, Y. A. (2007) Analysis of membrane topology of neutral sphingomyelinase 2, FEBS Lett., 581, 1323–1328.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wu, B. X., Clarke, C. J., and Hannun, Y. A. (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses, Neuromol. Med., 12, 320–330.CrossRefGoogle Scholar
  28. 28.
    Hofmann, K., Tomiuk, S., Wolff, G., and Stoffel, W. (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase, Proc. Natl. Acad. Sci. USA, 97, 5895–5900.PubMedCrossRefGoogle Scholar
  29. 29.
    Marchesini, N., Luberto, C., and Hannun, Y. A. (2003) Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism, J. Biol. Chem., 278, 13775–13783.PubMedCrossRefGoogle Scholar
  30. 30.
    Marchesini, N., Osta, W., Bielawski, J., Luberto, C., Obeid, L. M., and Hannun, Y. A. (2004) Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells, J. Biol. Chem., 279, 25101–25111.PubMedCrossRefGoogle Scholar
  31. 31.
    Karakashian, A. A., Giltiay, N. V., Smith, G. M., and Nikolova-Karakashian, M. N. (2004) Expreßsion of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-ß-induced JNK activation, FASEB J., 18, 968–970.PubMedGoogle Scholar
  32. 32.
    Clarke, C. J., Truong, T. G., and Hannun, Y. A. (2007) Role for neutral sphingomyelinase-2 in tumor necrosis factor a-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2, J. Biol. Chem., 282, 1384–1396.PubMedCrossRefGoogle Scholar
  33. 33.
    Adam, D., Wiegmann, K., Adam-Klages, S., Ruff, A., and Kronke, M. (1996) A novel cytoplasmic domain of the p55 tumor necrosis factor receptor initiates the neutral sphingomyelinase pathway, J. Biol. Chem., 271, 14617–14622PubMedCrossRefGoogle Scholar
  34. 34.
    Adam-Klages, S., Schwandner, R., Adam, D., Kreder, D., Bernardo, K., and Kronke, M. (1998) Distinct adapter proteins mediate acid versus neutral sphingomyelinase activation through the p55 receptor for tumor necrosis factor, J. Leukoc. Biol., 63, 678–682.Google Scholar
  35. 35.
    Linardic, L. A., and Hannun, Y. A. (1994) Identification of a distinct pool of sphingomyelin involved in the sphingomyelin cycle, J. Biol. Chem., 269, 23530–23537.PubMedGoogle Scholar
  36. 36.
    Tepper, A. D., Ruurs, P., Wiedmer, T., Sims, P. J., Borst. J., and Van Blitterswijk, W. J. (2000) Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology, J. Cell. Biol., 150, 155–164.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Koval, M., and Pagano, R. E. (1991) Intracellular transport and metabolism of sphingomyelin, Biochim. Biophys. Acta, 1082, 113–125.PubMedCrossRefGoogle Scholar
  38. 38.
    Grassme, H., Schwarz, H., and Gulbins, E. (2001) Molecular mechanisms of ceramide-mediated CD95 clustering, Biochem. Biophys. Res. Commun., 284, 1016–1030.PubMedCrossRefGoogle Scholar
  39. 39.
    Van Blitterswijk, W., Van der Luit, A., Veldman, R. J., Verheij, M., and Borst, J. (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J., 369, 199–211.Google Scholar
  40. 40.
    Vance, J. E. (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria, J. Biol. Chem., 265, 7248–7256.PubMedGoogle Scholar
  41. 41.
    Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A., Calvo, M., Enrich, C., and Fernandez-Checa, J. C. (2003) Defective TNF-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice, J. Clin. Invest., 111, 197–208.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bionda, C., Portoukalian, J., Schmitt, D., RodriguezLafrasse, C., and Ardail, D. (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem. J., 382, 527–533.Google Scholar
  43. 43.
    Ruiz-Arguello, M. B., Basanez, G., Goni, F. M., and Alonso, A. (1996) Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage, J. Biol. Chem., 271, 26616–26621.PubMedCrossRefGoogle Scholar
  44. 44.
    Hannun, Y. A., and Luberto, C. (2000) Ceramide in the eukaryotic stress response, Trends Cell Biol., 10, 73–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Ruvolo, P. P. (2003) Intracellular signal transduction pathways activated by ceramide and its metabolites, Pharmacol. Res., 47, 383–392.PubMedCrossRefGoogle Scholar
  46. 46.
    Kronke, M. (1999) Biophysics of ceramide signaling: interaction with proteins and phase transition of membranes, Chem. Phys. Lipids, 101, 109–121.PubMedCrossRefGoogle Scholar
  47. 47.
    Kolesnick, R., and Fuks, Z. (1995) Ceramide: a signal for apoptosis or mitogenesis? J. Exp. Med., 181, 1949–1952.Google Scholar
  48. 48.
    Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zon, L. I., Kyriakis, J. M., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. N. (1996) Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis, Nature, 380, 75–79.PubMedCrossRefGoogle Scholar
  49. 49.
    Michael, J. M., Lavin, M. F., and Watters, D. J. (1997) Resistance to radiation-induced apoptosis in Burkitt’s lymphoma cells is associated with defective ceramide signaling, Cancer Res., 57, 3600–3605.PubMedGoogle Scholar
  50. 50.
    Whitman, S., Civoli, F., and Daniel, L. (1997) Protein kinase C beta II activation by 1-beta-D-arabinofuranosylcytosine is antagonistic to stimulation of apoptosis and Bcl2alpha down-regulation, J. Biol. Chem., 272, 23481–23484.PubMedCrossRefGoogle Scholar
  51. 51.
    Suzuki, A., Iwasaki, M., Kato, M., and Wagai, N. (1997) Sequential operation of ceramide synthesis and ICE cascade in CPT-11-initiated apoptotic death signaling, Exp. Cell Res., 233, 41–47.PubMedCrossRefGoogle Scholar
  52. 52.
    Uchida, Y., Nardo, A. D., Collins, V., Elias, P. M., and Holleran, W. M. (2003) De novo ceramide synthesis participates in the ultraviolet B irradiation-induced apoptosis in undifferentiated cultured human keratinocytes, J. Invest. Dermatol., 120, 662–669.PubMedCrossRefGoogle Scholar
  53. 53.
    Kroesen, B. J., Jacobs, S., Pettus, B. J., Sietsma, H., Kok, J. W., Hannun, Y. A., and De Leij, L. F. (2003) BcR-induced apoptosis involves differential regulation of C16and C24ceramide formation and sphingolipid-dependent activation of the proteasome, J. Biol. Chem., 278, 14723–14731.PubMedCrossRefGoogle Scholar
  54. 54.
    Mathias, S., Dressler, K. A., and Kolesnick, R. N. (1991) Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha, Proc. Natl. Acad. Sci. USA, 88, 10009–10013.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhang, Y., Yao, B., Delikat, S. S., Bayoumy, S., Lin, X. H., Basu, S., McGinley, M., Chan-Hui, P. Y., Lichenstein, H., and Kolesnick, R. (1997) Kinase suppressor of Ras is ceramide-activated protein kinase, Cell, 89, 63–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu, J., Mathias, S., Yang, Z., and Kolesnick, R. N. (1994) Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated protein kinase, J. Biol. Chem., 269, 3047–3052.PubMedGoogle Scholar
  57. 57.
    Dhillon, A. S., and Kolch, W. (2002) Untying the regulation of the Raf-1 kinase, Arch. Biochem. Biophys., 404, 3–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Xing, H. R., and Kolesnick, R. (2001) Kinase suppressor of Ras signals through Thr-269 of c-Raf-1, J. Biol. Chem., 276, 9733–9741.PubMedCrossRefGoogle Scholar
  59. 59.
    Basu, S., and Kolesnick, R. (1998) Stress signals for apoptosis: ceramide and c-jun kinase, Oncogene, 17, 3277–3285.PubMedCrossRefGoogle Scholar
  60. 60.
    Mathias, Sh., Penna, L. A., and Kolesnick, R. N. (1998) Signal transduction of stress via ceramide, Biochem. J., 335, 465–480.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kishikawa, K., Chalfant, C. E., Perry, D. K., Bielawska, A., and Hannun, Y. A. (1999) Phosphatidic acid is a potent and selective inhibitor of protein phosphatase 1 and an inhibitor of ceramide-mediated responses, J. Biol. Chem., 274, 21335–21341.PubMedCrossRefGoogle Scholar
  62. 62.
    Dobrowsky, R. T., and Hannun, Y. A. (1993) Ceramide-activated protein phosphatase: partial purification and relationship to protein phosphatase 2A, Adv. Lipid Res., 25, 91–104.PubMedGoogle Scholar
  63. 63.
    Mumby, M. C., and Walter, G. (1993) Protein serine/threonine phosphatases: structure regulation and function in cell growth, Physiol. Rev., 73, 673–699.PubMedGoogle Scholar
  64. 64.
    Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K., and May, W. S. (1999) Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A, J. Biol. Chem., 274, 20296–20300.PubMedCrossRefGoogle Scholar
  65. 65.
    Ruvolo, P. P., Clark W., Mumby, M., Gao, F., and May, W. S. (2002) A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function, J. Biol. Chem., 277, 22847–22852.PubMedCrossRefGoogle Scholar
  66. 66.
    Reyes, J. G., Robayna, I. G., Delgado, P. S., Gonzalez, I. H., Aguiar, J. Q., Rosas, F. E., Fanjul, L. F., and Galarreta, C. M. (1996) C-jun is a downstream target for ceramideactivated protein phosphatase in a431 cells, J. Biol. Chem., 271, 21375–21380.PubMedCrossRefGoogle Scholar
  67. 67.
    Nikolova-Karakashian, M., Russell, R., Booth, R., Jenden, D., and Merrill, A. J. (1997) Sphingomyelin metabolism in rat liver after chronic dietary replacement of choline by N-aminodeanol, J. Lipid Res., 38, 1764–1770.PubMedGoogle Scholar
  68. 68.
    Chiang, C.-W., Harris, G., Ellig, C., Masters, S. C., Subramanian, R., Shenolikar, S., Wadzinski, B. E., and Yang, E. (2001) Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation, Blood, 97, 1289–1297.PubMedCrossRefGoogle Scholar
  69. 69.
    Schubert, K. M., Scheid, M. P., and Duronio, V. (2000) Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473, J. Biol. Chem., 275, 13330–13335.PubMedCrossRefGoogle Scholar
  70. 70.
    Salinas, M., Lopez-Valdaliso, R., Martin, D., Alvarez, A., and Cuadrado, A. (2000) Inhibition of PKB/Akt1 by C2ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells, Mol. Cell. Neurosci., 15, 156–169.PubMedCrossRefGoogle Scholar
  71. 71.
    Basu, S., Bayoumy, S., Zhang, Y., Lozano, J., and Kolesnick, R. (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1, J. Biol. Chem., 273, 3041930426.CrossRefGoogle Scholar
  72. 72.
    Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S., and Reed, J. C. (1998) Regulation of cell death protease caspase-9 by phosphorylation, Science, 282, 1318–1321.PubMedCrossRefGoogle Scholar
  73. 73.
    Dbaibo, G. S., Pushkareva, M. Y., Jayadev, S., Schwarz, J. K., Horowitz, J. M., Obeid, L. M., and Hannun, Y. A. (1995) Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest, Proc. Natl. Acad. Sci. USA, 92, 1347–1351.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hurley, J. H., Newton, A. C., Parker, P. J., Blumberg, P. M., and Nishizuka, Y. (1997) Taxonomy and function of C1 protein kinase C homology domains, Protein Sci., 6, 477–480.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Bourbon, N. A., Yun, J., and Kester, M. (2000) Ceramide directly activates protein kinase C to regulate a stress-activated protein kinase signaling complex, J. Biol. Chem., 275, 35617–35623.PubMedCrossRefGoogle Scholar
  76. 76.
    Doornbos, R. P., Theelen, M., Van der Hoeven, P. C., Van Blitterswijk, W. J., Verkleij, A. J., and Van Bergen en Henegouwen, P. M. (1999) Protein kinase C zeta is a negative regulator of protein kinase B activity, J. Biol. Chem., 274, 8589–8596.PubMedCrossRefGoogle Scholar
  77. 77.
    Brenner, B., Koppenhoefer, U., Weinstock, C., Linderkamp, O., Lang, F., and Gulbins, E. (1997) Fasor ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153, J. Biol. Chem., 272, 22173–22181.PubMedCrossRefGoogle Scholar
  78. 78.
    Haldar, S., Basu, A., and Croce, C. M. (1998) Serine-70 is one of the critical sites for drug-induced Bcl 2 phosphorylation in cancer cells, Cancer Res., 58, 1609–1615.PubMedGoogle Scholar
  79. 79.
    Yamamoto, K., Ihijo, H., and Korsmeyer, S. (1999) Bcl2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M, Mol. Cell. Biol., 19, 8469–8478.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mechta-Grigoriou, F., Gerald, D., and Yaniv, M. (2001) The mammalian Jun proteins: redundancy and specificity, Oncogene, 20, 2378–2389.PubMedCrossRefGoogle Scholar
  81. 81.
    Foghsgaard, L., Lademann, U., Wissing, D., Poulsen, B., and Jaattela, M. (2002) Cathepsin B mediates tumor necrosis factor-induced arachidonic acid release in tumor cells, J. Biol. Chem., 277, 39499–39506.PubMedCrossRefGoogle Scholar
  82. 82.
    Wu, G. S., Saftig, P., Peters C., and El-Deiry, W. S. (1998) Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity, Oncogene, 16, 2177–2183.PubMedCrossRefGoogle Scholar
  83. 83.
    Heinrich, M., Neumeyer, J., Jakob, M., Hallas, C., Tchikov, V., Winoto-Morbach, S., Wickel, M., SchneiderBrachert, W., Trauzold, A., Hethke, A., and Schutze, S. (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation, Cell Death Differ., 11, 550–563.PubMedCrossRefGoogle Scholar
  84. 84.
    Heinrich, M., Wickel, M., Winoto-Morbach, S., Schneider-Brachert, W., Weber, T., Brunner, J., Saftig, P., Peters, C., Kronke, M., and Schutze, S. (2000) Ceramide as an activator lipid of cathepsin D, Adv. Exp. Med. Biol., 477, 305–331.PubMedCrossRefGoogle Scholar
  85. 85.
    Dumitru, C. A., Sandalcioglu, I. E., Wagner, M., Weller, M., and Gulbins, E. (2009) Lysosomal ceramide mediates gemcitabine-induced death of glioma cells, J. Mol. Med. (Berlin), 87, 1123–1132.CrossRefGoogle Scholar
  86. 86.
    Liu, B., and Hannun, Y. A. (1997) Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione, J. Biol. Chem., 272, 16281–16287.PubMedCrossRefGoogle Scholar
  87. 87.
    Gulbins, E., and Li, P. L. (2006) Physiological and pathophysiological aspects of ceramide, Am. J. Physiol. Regul. Integr. Comp. Physiol., 290, R11–R26.PubMedCrossRefGoogle Scholar
  88. 88.
    Taha, T. A., Mullen, T. D., and Obeid, L. M. (2006) A house divided: ceramide, sphingosine, and sphingosine-1phosphate in programmed cell death, Biochim. Biophys. Acta, 1758, 2027–2036.Google Scholar
  89. 89.
    Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J. C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M. C., Cabot, M., and Merrill, A. H., Jr. (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy, Biochim. Biophys. Acta, 1758, 1864–1884.PubMedGoogle Scholar
  90. 90.
    Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26, 239–257.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kiechle, F. L., and Zhang, X. (2002) Apoptosis: biochemical aspects and clinical implications, Clin. Chim. Acta, 326, 27–45.PubMedCrossRefGoogle Scholar
  92. 92.
    Riedl, S. J., and Shi, Y. (2004) Molecular mechanisms of caspase regulation during apoptosis, Nat. Rev. Mol. Cell Biol., 5, 897–907.PubMedCrossRefGoogle Scholar
  93. 93.
    Szegezdi, E., Fitzgerald, U., and Samali, A. (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far, Ann. N. Y. Acad. Sci., 1010, 186–194.PubMedCrossRefGoogle Scholar
  94. 94.
    Wiegmann, K., Schutze, S., Machleidt, T., Witte, D., and Kronke, M. (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling, Cell, 78, 1005–1015.PubMedCrossRefGoogle Scholar
  95. 95.
    Dbaibo, G. S., Perry, D. K., Gamard, C. J., Platt, R., Poirier, G. G., Obeid, L. M., and Hannun, Y. A. (1997) Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway, J. Exp. Med., 185, 481–490.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Schwandner, R., Wiegmann, K., Bernardo, K., Kreder, D., and Kronke, M. (1998) TNF receptor death domainassociated proteins TRADD and FADD signal activation of acid sphingomyelinase, J. Biol. Chem., 273, 5916–5922.PubMedCrossRefGoogle Scholar
  97. 97.
    De Maria, R., Rippo, M., Schuchman, E., and Testi, R. (1998) Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells, J. Exp. Med., 187, 897–902.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Salvesen, G., and Dixit, V. (1997) Caspases: intracellular signaling by proteolysis, Cell, 91, 443–446.PubMedCrossRefGoogle Scholar
  99. 99.
    Cifone, M. G., Roncaioli, P., De Maria, R., Camarda, G., Santoni, A., Ruberti, G., and Testi, R. (1995) Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal, EMBO J., 14, 5859–5868.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Chinnaiyan, A. M., Tepper, C. G., Seldin, M. F., O’Rourke, K., Kischkel, F. C., Hellbardt, S., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis, J. Biol. Chem., 271, 4961–4965.PubMedCrossRefGoogle Scholar
  101. 101.
    Keane, R. W., Srinivasan, A., Foster, L. M., Testa, M. P., Ord, T., Nonner, D., Wang, H. G., Reed, J. C., Bredesen, D. E., and Kayalar, C. (1997) Activation of CPP32 during apoptosis of neurons and astrocytes, J. Neurosci. Res., 48, 168–180.PubMedCrossRefGoogle Scholar
  102. 102.
    Summers, S. A., and Nelson, D. H. (2005) A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome, Diabetes, 54, 591–602.PubMedGoogle Scholar
  103. 103.
    Turinsky, J., O’ Sullivan, D. M., and Bayly, B. P. (1990) 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo, J. Biol. Chem., 265, 16880–16885.PubMedGoogle Scholar
  104. 104.
    Gorska, M., Dobrzyn, A., Zendzian-Piotrowska, M., and Gorski, J. (2004) Effect of streptozotocin-diabetes on the functioning of the sphingomyelin-signaling pathway in skeletal muscles of the rat, Horm. Metab. Res., 36, 14–21.PubMedCrossRefGoogle Scholar
  105. 105.
    Adams, J. M., Pratipanawatr, T., Berria, R., Wang, E., DeFronzo, R. A., Sullards, M. C., and Mandarino, L. J. (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans, Diabetes, 53, 25–31.PubMedCrossRefGoogle Scholar
  106. 106.
    Straczkowski, M., Kowalska, I., Nikolajuk, A., DzienisStraczkowska, S., Kinalska, I., Baranowski, M., ZendzianPiotrowska, M., Brzezinska, Z., and Gorski, J. (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle, Diabetes, 53, 1215–1221.PubMedCrossRefGoogle Scholar
  107. 107.
    Holland, W. L., and Summers, S. A. (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism, Endocrin. Rev., 29, 381–402.Google Scholar
  108. 108.
    Hajduch, E., Balendran, A., Batty, I. H., Litherland, G. J., Blair, A. S., Downes, C. P., and Hundal, H. S. (2001) Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signaling in L6 skeletal muscle cells, Diabetologia, 44, 173–183.PubMedCrossRefGoogle Scholar
  109. 109.
    Kralik, S. F., Liu, P., Leffler, B. J., and Elmendorf, J. S. (2002) Ceramide and glucosamine antagonism of alternate signaling pathways regulating insulinand osmotic shockinduced glucose transporter 4 translocation, Endocrinology, 143, 37–46.PubMedCrossRefGoogle Scholar
  110. 110.
    Powell, D. J., Turban, S., Gray, A., Hajduch, E., and Hundal, H. S. (2004) Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells, Biochem. J., 382, 619–629.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Watson, M. L., Coghlan, M., and Hundal, H. S. (2009) Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells, Biochem. J., 417, 791–801.PubMedCrossRefGoogle Scholar
  112. 112.
    Hu, W., Ross, J., Geng, T., Brice, S. E., and Cowart, L. A. (2011) Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance, J. Biol. Chem., 286, 16596–16605.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kanety, H., Hemi, R., Papa, M. Z., and Karasik, A. (1996) Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate1, J. Biol. Chem., 271, 9895–9897.PubMedCrossRefGoogle Scholar
  114. 114.
    Paz, K., Hemi, R., LeRoith, D., Karasik, A., Elhanany, E., Kanety, H., and Zick, Y. (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation, J. Biol. Chem., 272, 29911–29918.PubMedCrossRefGoogle Scholar
  115. 115.
    Sathyanarayana, P., Barthwal, M. K., Kundu, C. N., Lane, M. E., Bergmann, A., Tzivion, G., and Rana, A. (2002) Activation of the Drosophila MLK by ceramide reveals TNFalpha and ceramide as agonists of mammalian MLK3, Mol. Cell, 10, 1527–1533.PubMedCrossRefGoogle Scholar
  116. 116.
    Kim, K. Y., Kim, B. C., Xu, Z., and Kim, S. J. (2004) Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells, J. Biol. Chem., 279, 2947829484.Google Scholar
  117. 117.
    Aguirre, V., Uchida, T., Yenush, L., Davis, R., and White, M. F. (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307), J. Biol. Chem., 275, 9047–9054.PubMedCrossRefGoogle Scholar
  118. 118.
    Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., and Hotamisligil, G. S. (2002) A central role for JNK in obesity and insulin resistance, Nature, 420, 333–336.PubMedCrossRefGoogle Scholar
  119. 119.
    Teruel, T., Hernandez, R., and Lorenzo, M. (2001) Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state, Diabetes, 50, 2563–2571.PubMedCrossRefGoogle Scholar
  120. 120.
    Zinda, M. J., Vlahos, C. J., and Lai, M. T. (2001) Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87MG cells, Biochem. Biophys. Res. Commun., 280, 1107–1115.PubMedCrossRefGoogle Scholar
  121. 121.
    Stratford, S., DeWald, D. B., and Summers, S. A. (2001) Ceramide dissociates 3’-phosphoinositide production from pleckstrin homology domain translocation, Biochem. J., 354, 359–368.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bourbon, N. A., Sandirasegarane, L., and Kester, M. (2002) Ceramide-induced inhibition of Akt is mediated through protein kinase C zeta: implications for growth arrest, J. Biol. Chem., 277, 3286–3292.PubMedCrossRefGoogle Scholar
  123. 123.
    Powell, D. J., Hajduch, E., Kular, G., and Hundal, H. S. (2003) Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism, Mol. Cell. Biol., 23, 7794–7808.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hajduch, E., Turban, S., Le Liepvre, X., Le Lay, S., Lipina, C., Dimopoulos, N., Dugail, I., and Hundal, H. S. (2008) Targeting of PKCzeta and PKB to caveolinenriched microdomains represents a crucial step underpinning the disruption in PKB-directed signaling by ceramide, Biochem. J., 410, 369–379.PubMedCrossRefGoogle Scholar
  125. 125.
    Lipina, C., and Hundal, H. S. (2011) Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance, Diabetologia, 54, 1596–1607.PubMedCrossRefGoogle Scholar
  126. 126.
    Van Epps-Fung, M., Williford, J., Wells, A., and Hardy, R. W. (1997) Fatty acid-induced insulin resistance in adipocytes, Endocrinology, 138, 4338–4345.PubMedGoogle Scholar
  127. 127.
    Mathis, D., Vence, L., and Benoist, C. (2001) Beta-cell death during progression to diabetes, Nature, 414, 792–798.PubMedCrossRefGoogle Scholar
  128. 128.
    Chandra, J., Zhivotovsky, B., Zaitsev, V., Juntti-Berggren, L., Berggren, P. O., and Orrenius, S. (2001) Role of apoptosis in pancreatic beta-cell death in diabetes, Diabetes, 50, S44–S47.PubMedCrossRefGoogle Scholar
  129. 129.
    Kim, K. A., and Lee, M. S. (2009) Recent progress in research on beta-cell apoptosis by cytokines, Front. Biosci., 14, 657–664.CrossRefGoogle Scholar
  130. 130.
    Ishizuka, N., Yagui, K., Tokuyama, Y., Yamada, K., Suzuki, Y., Miyazaki, J., Hashimoto, N., Makino, H., Saito, Y., and Kanatsuka, A. (1999) Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells, Metabolism, 48, 1485–1492.PubMedCrossRefGoogle Scholar
  131. 131.
    Welsh, N. (1996) Interleukin-1 beta-induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF2 in the insulin-producing cell line RINm5F, J. Biol. Chem., 271, 8307–8312.PubMedCrossRefGoogle Scholar
  132. 132.
    Lupi, R., Dotta, F., Marselli, L., Del Guerra, S., Masini, M., Santangelo, C., Patane, G., Boggi, U., Piro, S., Anello, M., Bergamini, E., Mosca, F., Di Mario, U., Del Prato, S., and Marchetti, P. (2002) Prolonged exposure to free fatty acids has cytostatic and proapoptotic effects on human pancreatic islets: evidence that beta cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated, Diabetes, 51, 1437–1442.PubMedGoogle Scholar
  133. 133.
    Shimabukuro, M., Higa, M., Zhou, Y. T., Wang, M. Y., Newgard, C. B., and Unger, R. H. (1998) Lipoapoptosis in beta cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression, J. Biol. Chem., 273, 32487–32490.PubMedCrossRefGoogle Scholar
  134. 134.
    Maedler, K., Spinas, G. A., Dyntar, D., Moritz, W., Kaiser, N., and Donath, M. Y. (2001) Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function, Diabetes, 50, 69–76.PubMedCrossRefGoogle Scholar
  135. 135.
    Lupi, R., Del Guerra, S., Fierabracci, V., Marselli, L., Novelli, M., Patane, G., Boggi, U., Mosca, F., Piro, S., Del Prato, S., and Marchetti, P. (2002) Lipotoxicity in human pancreatic islets and the protective effect of metformin, Diabetes, 51, S134–S137.PubMedCrossRefGoogle Scholar
  136. 136.
    Veret, J., Coant, N., Berdyshev, E. V., Skobeleva, A., Therville, N., Bailbe, D., Gorshkova, I., Natarajan, V., Portha, B., and Le Stunff, H. (2011) Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 ß-cells, Biochem. J., 438, 177–189.PubMedCrossRefGoogle Scholar
  137. 137.
    Thomas, H. E., McKenzie, M. D., Angstetra, E., Campbell, P. D., and Kay, T. W. (2009) Beta cell apoptosis in diabetes, Apoptosis, 14, 1389–1404.PubMedCrossRefGoogle Scholar
  138. 138.
    Liadis, N., Salmena, L., Kwan, E., Tajmir, P., Schroer, S. A., Radziszewska, A., Li, X., Sheu, L., Eweida, M., Xu, S., Gaisano, H. Y., Hakem, R., and Woo, M. (2007) Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models, Diabetes, 56, 2302–2311.PubMedCrossRefGoogle Scholar
  139. 139.
    Tait, S. W., and Green, D. R. (2010) Mitochondria and cell death: outer membrane permeabilization and beyond, Nat. Rev. Mol. Cell Biol., 11, 621–632.PubMedCrossRefGoogle Scholar
  140. 140.
    Birbes, H., El Bawab, S., and Hannun, Y. A. (2001) Mitochondria and ceramide: intertwined roles in regulation of apoptosis, FASEB J., 15, 669–2679.CrossRefGoogle Scholar
  141. 141.
    Taylor, R. C., Cullen, S. P., and Martin, S. J. (2008) Apoptosis: controlled demolition at the cellular level, Nat. Rev. Mol. Cell Biol., 9, 231–241.PubMedCrossRefGoogle Scholar
  142. 142.
    Birbes, H., Luberto, C., Hsu, Y. T., El Bawab, S., Hannun, Y. A., and Obeid, L. M. (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria, Biochem. J., 386, 445–451.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Birbes, H., El Bawab, S., Obeid, L. M., and Hannun, Y. A. (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis, Adv. Enzyme Regul., 42, 113–129.PubMedCrossRefGoogle Scholar
  144. 144.
    Maestre, I., Jordan, J., Calvo, S., Reig, J. A., Cena, V., Soria, B., Prentki, M., and Roche, E. (2003) Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the betacell line INS-1, Endocrinology, 144, 335–345.PubMedCrossRefGoogle Scholar
  145. 145.
    Siskind, L. J., Kolesnick, R. N., and Colombini, M. (2006) Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations, Mitochondrion, 6, 118–125.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Navarro, P., Valverde, A. M., Rohn, J. L., Benito, M., and Lorenzo, M. (2000) Akt mediates insulin rescue from apoptosis in brown adipocytes: effect of ceramide, Growth Horm. IGF Res., 10, 256–266.PubMedCrossRefGoogle Scholar
  147. 147.
    Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A., and Fernandez-Checa, J. C. (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione, J. Biol. Chem., 272, 11369–11377.PubMedCrossRefGoogle Scholar
  148. 148.
    Voehringer, D. W., McConkey, D. J., McDonnell, T. J., Brisbay, S., and Meyn, R. E. (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus, Proc. Natl. Acad. Sci. USA, 95, 2956–2960.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Zhang, A. Y., Teggatz, E. G., Zou, A. P., Campbell, W. B., and Li, P. L. (2005) Endostatin uncouples NOand Ca2+ response to bradykinin through enhanced O2 ·–production in the intact coronary endothelium, Am. J. Physiol. Heart Circ. Physiol., 288, H686–H694.PubMedCrossRefGoogle Scholar
  150. 150.
    Hatanaka, Y., Fujii, J., Fukutomi, T., Watanabe, T., Che, W., Sanada, Y., Igarashi, Y., and Taniguchi, N. (1998) Reactive oxygen species enhances the induction of inducible nitric oxide synthase by sphingomyelinase in RAW264.7 cells, Biochim. Biophys. Acta, 1393, 203–210.PubMedCrossRefGoogle Scholar
  151. 151.
    Pilane, C. M., and LaBelle, E. F. (2004) NO induced apoptosis of vascular smooth muscle cells accompanied by ceramide increase, J. Cell. Physiol., 199, 310–315.PubMedCrossRefGoogle Scholar
  152. 152.
    Franzen, R., Fabbro, D., Aschrafi, A., Pfeilschifter, J., and Huwiler, A. (2002) Nitric oxide induces degradation of the neutral ceramidase in rat renal mesangial cells and is counterregulated by protein kinase C, J.Biol. Chem., 277, 46184–46190.PubMedCrossRefGoogle Scholar
  153. 153.
    Di Paola, M., Cocco, T., and Lorusso, M. (2000) Ceramide interaction with the respiratory chain of heart mitochondria, Biochemistry, 39, 6660–6668.PubMedCrossRefGoogle Scholar
  154. 154.
    Gudz, T. I., Tserng, K. Y., and Hoppel, C. L. (1997) Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide, J. Biol. Chem., 272, 2415424158.CrossRefGoogle Scholar
  155. 155.
    Morgan, D., Rebelato, E., Abdulkader, F., Graciano, M. F., Oliveira-Emilio, H. R., Hirata, A. E., Rocha, M. S., Bordin, S., Curi, R., and Carpinelli, A. R. (2009) Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells, Endocrinology, 150, 2197–2201.PubMedCrossRefGoogle Scholar
  156. 156.
    Won, J. S., Im, Y. B., Khan, M., Singh, A. K., and Singh, I. (2004) The role of neutral sphingomyelinase produced ceramide in lipopolysaccharide-mediated expression of inducible nitric oxide synthase, J. Neurochem., 88, 583–593.PubMedCrossRefGoogle Scholar
  157. 157.
    Shimabukuro, M., Zhou, Y. T., Levi, M., and Unger, R. H. (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes, Proc. Natl. Acad. Sci. USA, 95, 2498–2502.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Cnop, M., Foufelle, F., and Velloso, L. A. (2012) Endoplasmic reticulum stress, obesity and diabetes, Trends Mol. Med., 18, 59–68.CrossRefGoogle Scholar
  159. 159.
    Socha, L., Silva, D., Lesage, S., Goodnow, C., and Petrovsky, N. (2003) The role of endoplasmic reticulum stress in nonimmune diabetes: NOD.k iHEL, a novel model of beta cell death, Ann. N. Y. Acad. Sci., 1005, 178183.Google Scholar
  160. 160.
    Laybutt, D. R., Preston, A. M., Akerfeldt, M. C., Kench, J. G., Busch, A. K., Biankin, A. V., and Biden, T. J. (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes, Diabetologia, 50, 752–763.PubMedCrossRefGoogle Scholar
  161. 161.
    Lai, E., Bikopoulos, G., Wheeler, M. B., Rozakis-Adcock, M., and Volchuk, A. (2008) Differential activation of ER stress and apoptosis in response to chronically elevated free fatty acids in pancreatic beta-cells, Am. J. Physiol. Endocrinol. Metab., 294, e540-E550.CrossRefGoogle Scholar
  162. 162.
    Riemer, J., Bulleid, N., and Herrmann, J. M. (2009) Disulfide formation in the ER and mitochondria: two solutions to a common process, Science, 324, 1284–1287.PubMedCrossRefGoogle Scholar
  163. 163.
    Briaud, I., Harmon, J. S., Kelpe, C. L., Segu, V. B., and Poitout, V. (2001) Lipotoxicity of the pancreatic beta cell is associated with glucose-dependent esterification of fatty acids into neutral lipids, Diabetes, 50, 315–321.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Kelpe, C. L., Moore, P. C., Parazzoli, S. D., Wicksteed, B., Rhodes, C. J., and Poitout, V. (2003) Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis, J. Biol. Chem., 278, 30015–30021.PubMedCrossRefGoogle Scholar
  165. 165.
    Guo, J., Qian, Y., Xi, X., Hu, X., Zhu, J., and Han, X. (2010) Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic beta cells, Mol. Cell. Biochem., 338, 283–290.PubMedCrossRefGoogle Scholar
  166. 166.
    Henderson, E., and Stein, R. (1994) c-Jun inhibits transcriptional activation by the insulin enhancer, and the insulin control element is the target of control, Mol. Cell. Biol., 14, 655–662.Google Scholar
  167. 167.
    Kaneto, H., Xu, G., Fujii, N., Kim, S., Bonner-Weir, S., and Weir, G. C. (2002) Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression, J. Biol. Chem., 277, 30010–30018.PubMedCrossRefGoogle Scholar
  168. 168.
    Bourbon, N. A., Yun, J., and Kester, M. (2002) Ceramide directly activates protein kinase C zeta to regulate a stressactivated protein kinase signaling complex, J. Biol. Chem., 275, 35617–35623.CrossRefGoogle Scholar
  169. 169.
    Furukawa, N., Shirotani, T., Araki, E., Kaneko, K., Todaka, M., Matsumoto, K., Tsuruzoe, K., Motoshima, H., Yoshizato, K., Kishikawa, H., and Shichiri, M. (1999) Possible involvement of atypical protein kinase C (PKC) in glucose-sensitive expression of the human insulin gene: DNA binding activity and transcriptional activity of pancreatic and duodenal homeobox gene-1 (PDX-1) are enhanced via calphostin C-sensitive but phorbol 12-myristate 13-acetate (PMA) and Go 6976-insensitive pathway, Endocrin. J., 46, 43–58.CrossRefGoogle Scholar
  170. 170.
    Sano, H., Kane, S., Sano, E., Miinea, C. P., Asara, J. M., Lane, W. S., Garner, Ch. W., and Lienhard, G. E. (2003) Insulin-stimulated phosphorylation of a Rab GTPaseactivating protein regulates GLUT4 translocation, J. Biol. Chem., 278, 14599–14602.PubMedCrossRefGoogle Scholar
  171. 171.
    Veret, J., Coant, N., Berdyshev, E. V., Skobeleva, A., Therville, N., Bailbe, D., Gorshkova, I., Natarajan, V., Portha, B., and Le Stunff, H. (2011) Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 ß-cells, Biochem. J., 438, 177–189.PubMedCrossRefGoogle Scholar
  172. 172.
    Cinar, R., Godlewski, G., Liu, J., Tam, J., Jourdan, T., Mukhopadhyay, B., Harvey-White, J., and Kunos, G. (2014) Hepatic cannabinoid-1 receptors mediate dietinduced insulin resistance by increasing de novo synthesis of long-chain ceramides, Hepatology, 59, 143–153.PubMedCrossRefGoogle Scholar
  173. 173.
    Park, J. W., Park, W. J., Kuperman, Y., Boura-Halfon, S., Pewzner-Jung, Y., and Futerman, A. H. (2013) Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes, Hepatology, 57, 525–532.PubMedCrossRefGoogle Scholar
  174. 174.
    Bajpeyi, S., Myrland, C. K., Covingto, J. D., Obanda, D., Cefalu, W. T., Smith, S. R., Rustan, A. C., and Ravussin, E. (2014) Lipid in skeletal muscle myotubes is associated to the donors’ insulin sensitivity and physical activity phenotypes, Obesity (Silver Spring), 22, 426–434.CrossRefGoogle Scholar
  175. 175.
    Frangioudakis, G., Diakanastasis, B., Liao, B. Q., Saville, J. T., Hoffman, N. J., Mitchell, T. W., and Schmitz-Peiffer, C. (2013) Ceramide accumulation in L6 skeletal muscle cells due to increased activity of ceramide synthase isoforms has opposing effects on insulin action to those caused by palmitate treatment, Diabetologia, 56, 26972701.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Siberian State Medical UniversityMinistry of Healthcare of the Russian FederationTomskRussia

Personalised recommendations