Biochemistry (Moscow)

, Volume 81, Issue 8, pp 906–911 | Cite as

Temporal scaling of age-dependent mortality: Dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable

  • A. V. Markov
  • E. B. Naimark
  • E. U. YakovlevaEmail author


The dynamics of aging is often described by survival curves that show the proportion of individuals surviving to a given age. The shape of the survival curve reflects the dependence of mortality on age, and it varies greatly for different organisms. In a recently published paper, Stroustrup and coauthors ((2016) Nature, {vn530}, 103–107) showed that many factors affecting the lifespan of Caenorhabditis elegans do not change the shape of the survival curve, but only stretch or compress it in time. Apparently, this means that aging is a programmed process whose trajectory is difficult to change, although it is possible to speed it up or slow it down. More research is needed to clarify whether the “rule of temporal scaling” is applicable to other organisms. A good indicator of temporal scaling is the coefficient of lifespan variation: similar values of this coefficient for two samples indicate similar shape of the survival curves. Preliminary results of experiments on adaptation of Drosophila melanogaster to unfavorable food show that temporal scalability of survival curves is sometimes present in more complex organisms, although this is not a universal rule. Both evolutionary and environmental changes sometimes affect only the average lifespan without changing the coefficient of variation (in this case, temporal scaling is present), but often both parameters (i.e. both scale and shape of the survival curve) change simultaneously. In addition to the relative stability of the coefficient of variation, another possible argument in favor of genetic determination of the aging process is relatively low variability of the time of death, which is sometimes of the same order of magnitude as the variability of timing of other ontogenetic events, such as the onset of sexual maturation.


aging survival curves mortality stability temporal scaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., Lopez-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103–107.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Giovanni Camarda, C., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.CrossRefPubMedGoogle Scholar
  3. 3.
    Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547–1559.CrossRefGoogle Scholar
  4. 4.
    Zhmylev, P. Yu. (2006) Evolution of plant lifespan: facts and hypotheses, Zh. Obshch. Biol., 67, 107–119.Google Scholar
  5. 5.
    Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  7. 7.
    Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Programmed and altruistic ageing, Nature Rev. Genet., 6, 866–872.CrossRefPubMedGoogle Scholar
  8. 8.
    Burger, J. M. S., Hwangbo, D. S., Corby-Harris, V., and Promislow, D. E. L. (2007) The functional costs and benefits of dietary restriction in Drosophila, Aging Cell, 6, 63–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Khokhlov, A. N. (2009) Does aging require a separate program or the existing program of development is sufficient? Zh. Ross. Khim. Obshch. im. Mendeleeva, 53, 111–116.Google Scholar
  10. 10.
    Ayyadevara, S., Alla, R., Thaden, J. J., and Shmookler Reis, R. J. (2008) Remarkable longevity and stress resistance of nematode PI3K-null mutants, Aging Cell, 7, 13–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Grandison, R. C., Piper, M. D. W., and Partridge, L. (2009) Amino acid imbalance explains extension of lifespan by dietary restriction in Drosophila, Nature, 462, 1061–1064.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., and Miller, R. A. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice, Nature, 460, 392–395.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Markov, A. V. (2012) Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–741.CrossRefGoogle Scholar
  14. 14.
    Pincus, Z., Smith-Vikos, T., and Slack, F. J. (2011) MicroRNA predictors of longevity in Caenorhabditis elegans, PLoS Genet., 7, e1002306.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Herndon, L. A., Schmeissner, P. J., Dudaronek, J. M., Brown, A. P., Listner, K. M., Sakano, Y., Paupard, M. C., Hall, D. H., and Driscoll, M. (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans, Nature, 419, 808–814.CrossRefPubMedGoogle Scholar
  16. 16.
    Stroustrup, N., Ulmschneider, B. E., Nash, Z. M., LopezMoyado, I. F., Apfeld, J., and Fontana, W. (2013) The Caenorhabditis elegans lifespan machine, Nat. Methods, 10, 665–670.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Martin, G. M., Austad, S. N., and Johnson, T. E. (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses, Nat. Genet., 13, 25–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Wu, D., Rea, S. L., Cypser, J. R., and Johnson, T. E. (2009) Mortality shifts in Caenorhabditis elegans: remembrance of conditions past, Aging Cell, 8, 666–675.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lithgow, G. J., White, T. M., Melov, S., and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress, Proc. Natl. Acad. Sci. USA, 92, 7540–7544.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Johnson, T. E., Wu, D., Tedesco, P., Dames, S., and Vaupel, J. W. (2001) Age-specific demographic profiles of longevity mutants in Caenorhabditis elegans show segmental effects, J. Gerontol. Ser. A, 56, B331–B339.CrossRefGoogle Scholar
  21. 21.
    Gompertz, B. (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc. Lond. B Biol. Sci., 115, 513–585.CrossRefGoogle Scholar
  22. 22.
    Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754–760.CrossRefGoogle Scholar
  23. 23.
    Chistyakov, V. A., and Denisenko, Yu. V. (2010) Imitational modeling of drosophila aging in silico, Usp. Gerontol., 23, 557–563.Google Scholar
  24. 24.
    Markov, A. V., Ivnitsky, S. B., Kornolova M. B., Naimark, E. B., Shirokova, N. G., and Perfilieva, K. S. (2015) Maternal effect masks adaptation to adverse conditions and hinders divergence in Drosophila melanogaster, Zh. Obshch. Biol., 76, 429–437.PubMedGoogle Scholar
  25. 25.
    Sgro, C. M., and Partridge, L. (1999) A delayed wave of death from reproduction in Drosophila, Science, 286, 2521–2524.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Markov
    • 1
    • 2
  • E. B. Naimark
    • 2
  • E. U. Yakovleva
    • 3
    Email author
  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Paleontological Institute of Russian Academy of SciencesMoscowRussia
  3. 3.Economics FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations