Biochemistry (Moscow)

, Volume 81, Issue 8, pp 899–905 | Cite as

NMDA-receptors are involved in Cu2+/paraquat-induced death of cultured cerebellar granule neurons

  • E. V. StelmashookEmail author
  • E. E. Genrikhs
  • O. P. Aleksandrova
  • G. A. Amelkina
  • E. A. Zelenova
  • N. K. IsaevEmail author


Rat cultured cerebellar granule neurons (CGNs) were not sensitive to CuCl2 (1-10 µM, 24 h), whereas paraquat (150 µM) decreased neuronal survival to 79 ± 3% of control level. Simultaneous treatment of CGNs with paraquat and CuCl2 (2, 5, or 10 µM Cu2+/paraquat) caused significant copper dose-dependent death, lowering their survival to 56 ± 4, 37 ± 3, or 16 ± 2%, respectively, and stimulating elevated production of free radicals in CGNs. Introduction of vitamin E, a non-competitive antagonist of NMDA subtype of glutamate receptors (MK-801), and also removal of glutamine from the incubation medium decreased toxicity of Cu2+/paraquat mixture. However, addition of Cu2+ into the incubation medium did not affect CGNs death caused by glutamate. These data emphasize that excessive copper in the brain may trigger oxidative stress, which in turn results in release of glutamate, overstimulation of glutamate receptors, and neuronal death.


copper paraquat cerebellar granule neurons free radicals glutamate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stelmashook, E. V., Isaev, N. K., Genrikhs, E. E., Amelkina, G. A., Khaspekov, L. G., Skrebitsky, V. G., and Illarioshkin, S. N. (2014) Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases, Biochemistry (Moscow), 79, 391–396.CrossRefGoogle Scholar
  2. 2.
    Gaier, E. D., Eipper, B. A., and Mains, R. E. (2013) Copper signaling in the mammalian nervous system: synaptic effects, J. Neurosci. Res., 91, 2–19.PubMedGoogle Scholar
  3. 3.
    Kardos, J., Kovacs, I., Hajos, F., Kalman, M., and Simonyi, M. (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability, Neurosci. Lett., 103, 139–144.CrossRefPubMedGoogle Scholar
  4. 4.
    Jomova, K., Vondrakova, D., Lawson, M., and Valko, M. (2010) Metals, oxidative stress and neurodegenerative disorders, Mol. Cell. Biochem., 345, 91–104.CrossRefPubMedGoogle Scholar
  5. 5.
    Cartwright, G. E., and Wintrobe, M. M. (1964) Copper metabolism in normal subjects, Am. J. Clin. Nutr., 14, 224–232.PubMedGoogle Scholar
  6. 6.
    Linder, M. C. (1991) Biochemistry of Copper, Plenum Press, New York.CrossRefGoogle Scholar
  7. 7.
    Isaev, N. K., Stelmashook, E. V., Dirnagl, U., Plotnikov, E. Yu., Kuvshinova, E. A., and Zorov, D. B. (2008) Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons, Biochemistry (Moscow), 73, 149–155.CrossRefGoogle Scholar
  8. 8.
    Eagle, H. (1959) Amino acid metabolism in mammalian cell cultures, Science, 130, 432–437.CrossRefPubMedGoogle Scholar
  9. 9.
    Gallo, V., Ciotti, M. T., Aloisi, F., and Levi, G. (1982) Selective release of glutamate from cerebellar granule cells differen tiating in culture, Proc. Natl. Acad. Sci. USA, 79, 7919–7923.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McCaslin, P. P., and Morgan, W. W. (1987) Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function, Brain Res., 417, 380–384.CrossRefPubMedGoogle Scholar
  11. 11.
    Stelmashook, E. V., Novikova, S. V., and Isaev, N. K. (2010) Glutamine effect on cultured granule neuron death induced by glucose deprivation and chemical hypoxia, Biochemistry (Moscow), 75, 1039–1044.CrossRefGoogle Scholar
  12. 12.
    Gonzalez-Polo, R. A., Rodriguez-Martin, A., Moran, J. M., Niso, M., Soler, G., and Fuentes, J. M. (2004) Paraquat-induced apoptotic cell death in cerebellar granule cells, Brain Res., 1011, 170–176.CrossRefPubMedGoogle Scholar
  13. 13.
    Cristovao, A. C., Choi, D. H., Baltazar, G., Beal, M. F., and Kim, Y. S. (2009) The role of NADPH oxidase 1derived reactive oxygen species in paraquat-mediated dopaminergic cell death, Antioxid. Redox Signal., 11, 2105-2018.Google Scholar
  14. 14.
    Stelmashook, E. V., Isaev, N. K., Plotnikov, E. Y., Uzbekov, R. E., Alieva, I. B., Arbeille, B., and Zorov, D. B. (2009) Effect of transitory glucose deprivation on mitochondrial structure and functions in cultured cerebellar granule neurons, Neurosci. Lett., 461, 140–144.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu, Y., Lu, L., Hettinger, C. L., Dong, G., Zhang, D., Rezvani, K., Wang, X., and Wang, H. (2014) Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice, J. Neurosci., 34, 2813–2821.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Stelmashook, E. V., Isaev, N. K., and Zorov, D. B. (2007) Paraquat potentiates glutamate toxicity in immature cultures of cerebellar granule neurons, Toxicol. Lett., 174, 82–88.CrossRefPubMedGoogle Scholar
  17. 17.
    Isaev, N. K., Genrikhs, E. E., Aleksandrova, O. P., Zelenova, E. A., and Stelmashook, E. V. (2016) Glucose deprivation stimulates Cu2+ toxicity in cultured cerebellar granule neurons and Cu2+-dependent zinc release, Toxicol. Lett., 250/251, 29–34.CrossRefGoogle Scholar
  18. 18.
    Su, X. Y., Wu, W. H., Huang, Z. P., Hu, J., Lei, P., Yu, C. H., Zhao, Y. F., and Li, Y. M. (2007) Hydrogen peroxide can be generated by tau in the presence of Cu(II), Biochem. Biophys. Res. Commun., 358, 661–665.CrossRefPubMedGoogle Scholar
  19. 19.
    Samuele, A., Mangiagalli, A., Armentero, M. T., Fancellu, R., Bazzini, E., Vairetti, M., Ferrigno, A., Richelmi, P., Nappi, G., and Blandini, F. (2005) Oxidative stress and pro-apoptotic conditions in a rodent model of Wilson’s disease, Biochim. Biophys. Acta, 1741, 325–330.CrossRefPubMedGoogle Scholar
  20. 20.
    Kumar, V., Kalita, J., Misra, U. K., and Bora, H. K. (2015) A study of dose response and organ usceptibility of copper toxicity in a rat model, J. Trace Elem. Med. Biol., 29, 269–274.CrossRefPubMedGoogle Scholar
  21. 21.
    Gaetke, L. M., Chow-Johnson, H. S., and Chow, C. K. (2014) Copper: toxicological relevance and mechanisms, Arch. Toxicol., 88, 1929–1938.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Isaev, N. K., Stelmashook, E. V., Ruscher, K., Andreeva, N. A., and Zorov, D. B. (2004) Menadione reduces rotenone-induced cell death in cerebellar granule neurons, Neuroreport, 15, 2227–2231.CrossRefPubMedGoogle Scholar
  23. 23.
    Rodriguez-Rocha, H., Garcia-Garcia, A., Pickett, C., Li, S., Jones, J., Chen, H., Webb, B., Choi, J., Zhou, Y., Zimmerman, M. C., and Franco, R. (2013) Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: distinct roles of superoxide anion and superoxide dismutases, Free Radic. Biol. Med., 61, 370–383.CrossRefPubMedGoogle Scholar
  24. 24.
    Stelmashook, E. V., Lozier, E. R., Goryacheva, E. S., Mergenthaler, P., Novikova, S. V., Zorov, D. B., and Isaev, N. K. (2010) Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity, Neurosci. Lett., 482, 151–155.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. V. Stelmashook
    • 1
    Email author
  • E. E. Genrikhs
    • 1
  • O. P. Aleksandrova
    • 1
  • G. A. Amelkina
    • 2
  • E. A. Zelenova
    • 1
    • 2
  • N. K. Isaev
    • 1
    • 2
    Email author
  1. 1.Neurology Research CenterMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations