Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 8, pp 819–834 | Cite as

Plant sterols: Diversity, biosynthesis, and physiological functions

  • J. N. Valitova
  • A. G. Sulkarnayeva
  • F. V. MinibayevaEmail author
Review

Abstract

Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.

Keywords

plant sterols sphingolipids stress 

Abbreviations

ASG

acylated sterol glycosides

BS

brassinosteroids

CYP710A

C22-sterol desaturase

HMGR

3hydroxy-3-methylglutaryl-CoA reductase

DGDG

digalactosyldiacylglycerols

ER

endoplasmic reticulum

FA

fatty acids

GC

glycosylceramides

GIPC

glycosyl inositol phosphor ceramides

PA

phosphatidic acid

PC

phosphatidylcholine

PE

phosphatidylethanolamine

PI

phosphatidylinositols

PL

phospholipids

PM

plasma membrane

ROS

reactive oxygen species

SG

sterol glycosides

SGT

UDP-glucose sterol glucosyl transferase

SMT

C24-sterol methyltransferase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schaller, H. (2003) The role of sterols in plant growth and development, Progress Lipid Res., 42, 163–175.CrossRefGoogle Scholar
  2. 2.
    Nes, W. D. (2000) Sterol methyltransferase: enzymology and inhibition, Biochim. Biophys. Acta, 1529, 63–88.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown, R. E. (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal, J. Cell Sci., 111, 1–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Boldyrev, A. A. (1985) In Biological Membranes and Ion Transport [in Russian], Moscow State University, Moscow.Google Scholar
  5. 5.
    Antonov, V. F. (1982) In Lipids and Ion Permeability of Membranes [in Russian], Nauka, Moscow.Google Scholar
  6. 6.
    Grunwald, C. (1971) Effects of free sterols, steryl ester, and steryl glycoside on membrane permeability, Plant Physiol., 48, 653–655.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Shuler, I., Durtail, G., Glasser, N., Benveniste, P., and Hartmann, M.-A. (1990) Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study, Biochim. Biophys. Acta, 1028, 82–88.CrossRefGoogle Scholar
  8. 8.
    Ivanova, A. B., Gordon, L. Kh., and Lygin, A. V. (1997) Role of structural lipids in ion transport regulation in plant cells, Tsitologiya, 39, 285–293.Google Scholar
  9. 9.
    Lindsey, K., Pullen, M. L., and Topping, J. F. (2003) Importance of plant sterols in pattern formation and hormone signaling, Trends Plant Sci., 8, 521–525.PubMedCrossRefGoogle Scholar
  10. 10.
    Benveniste, P. (2004) Biosynthesis and accumulation of sterols, Annu. Rev. Plant Biol., 55, 429–457.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, Z.-Y., Wang, Q., Chong, K., Wang, F., Wang, L., Bai, M., and Jia, C. (2006) The brassinosteroid signal transduction pathway, Cell Res., 16, 427–434.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Mongrand, S., Morel, J., Laroche, J., Claverol, S., Carde, J. P., Hartmann, M. A., Bonneu, M., Simon-Plas, F., Lessire, R., and Bessoule, J. J. (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X100-insoluble microdomains from tobacco plasma membrane, J. Biol. Chem., 279, 36277–36286.PubMedCrossRefGoogle Scholar
  13. 13.
    Laloi, M., Perret, A.-M., Chatre, L., Melser, S., Cantrel, C., Vaultier, M. N., Zachowski, A., Bathany, K., Schmitter, J. M., Vallet, M., Lessire, R., Hartmann, M. A., and Moreau, P. (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells, Plant Physiol., 143, 461–472.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Valitova, J. N., Minibayeva, F. V., Kotlova, E. R., Novikov, A. V., Shavarda, A. L., Murtazina, L. I., and Ryzhkina, I. S. (2011) Glycoceramide composition following sterol depletion in wheat roots, Phytochemistry, 72, 1751–1759.PubMedCrossRefGoogle Scholar
  15. 15.
    Jang, J.-C. (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana, Genes Dev., 14, 1485–1497.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Schaeffer, A., Bronner, R., Benveniste, P., and Schaller, H. (2001) Plant sterol-C24-methyl transferases: different profiles of tobacco transformed with SMT1 or SMT2, Plant J., 25, 605–615.PubMedCrossRefGoogle Scholar
  17. 17.
    Holmberg, N., Harker, M., Gibbard, C. L., Wallace, A. D., Clayton, J. C., Wallace, A. D., Clayton, J. C., Rawlins, S., Hellyer, A., and Safford, R. (2002) Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed, Plant Physiol., 130, 303–311.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Svoboda, J. A., and Weirich, G. F. (1995) Sterol metabolism in the tobacco hornworm, Manduca sexta, Lipids, 30, 263–267.PubMedCrossRefGoogle Scholar
  19. 19.
    Guo, D. A., Venkatramesh, M., and Nes, W. D. (1995) Developmental regulation of sterol biosynthesis in Zea mays, Lipids, 30, 203–219.PubMedCrossRefGoogle Scholar
  20. 20.
    Bretscher, M. S., and Munro, S. (1993) Cholesterol and the Golgi apparatus, Science, 261, 1280–1281.PubMedCrossRefGoogle Scholar
  21. 21.
    Rochester, C. P., Kjellbom, P., and Larsson, C. (1987) Lipid composition of plasma membranes from barley leaves and roots, spinach leaves and cauliflower inflorescences, Physiol. Plant, 71, 257–263.CrossRefGoogle Scholar
  22. 22.
    Silvestro, L. D., Andersen, T. G., Schaller, H., and Jensen, P. E. (2013) Plant sterol metabolism. D7-sterol-C5desaturase (STE1/DWARF7), D5,7-sterol-D7-reductase (DWARF5) and D24-sterol-D24-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh), PLoS One, 8, e56429.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Demel, R. A., and De Kruyff, B. (1976) The function of sterols in membranes, Biochim. Biophys. Acta, 457, 109–132.PubMedCrossRefGoogle Scholar
  24. 24.
    Schuler, I., Milon, A., Nakatani, Y., Ourisson, G., Albrecht, A. M., Benveniste, P., and Hartman, M. A. (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers, Proc. Natl. Acad. Sci. USA, 88, 6926–6930.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hartmann, M. A., and Benveniste, P. (1987) Plant membrane sterols: isolation, identification and biosynthesis, Methods Enzymol., 148, 632–650.Google Scholar
  26. 26.
    Yoshida, S., and Uemura, M. (1986) Lipid composition of plasma membranes and tonoplasts isolated from etiolated seedlings of mung bean (Vigna radiata L.), Plant Physiol., 82, 807–812.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Meance, J., Duperon, P., and Duperon, R. (1976) Repartition des substances steroliques a l’interieur des mitochondries de l’inflorescence de Chou-fleur, Physiol. Veg., 59, 745–756.Google Scholar
  28. 28.
    Benveniste, P. (1986) Sterol biosynthesis, Annu. Rev. Plant Physiol., 37, 275–307.CrossRefGoogle Scholar
  29. 29.
    Schaller, H., Bouvier-Nave, P., and Benveniste, P. (1998) Overexpression of an Arabidopsis cDNA encoding a sterolC24(1)-methyltransferase in tobacco modifies the ratio of 24-methylcholesterol to sitosterol and is associated with growth reduction, Plant Physiol., 118, 461–469.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sikorski, Z. E., and Kolakowska, A. (2002) Chemical and Functional Properties of Food Lipids, CRC Press, Boca Raton, London-New York-Washington, DC.CrossRefGoogle Scholar
  31. 31.
    Schaller, H., Grausem, B., Benveniste, P., Chye, M. L., Tan, C. T., Song, Y. H., and Chua, N. H. (1995) Expression of the Hevea brasiliensis (H.B.K.) Mull. Arg. 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction, Plant Physiol., 109, 761–770.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Bouvier-Nave, P., and Benveniste, P. (1995) Sterol acyl transferase and sterylester hydrolase activities in a tobacco mutant which overproduces sterols, Plant Sci., 110, 11–19.CrossRefGoogle Scholar
  33. 33.
    Hernandez-Pinzon, I., Ross, J. H., Barnes, K. A., Damant, A. P., and Murphy, D. J. (1999) Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus, Planta, 208, 588–598.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu, S. S., Moreau, R. A., Whitaker, B. D., and Huang, A. H. (1999) Steryl esters in the elaioplasts of the tapetum in developing Brassica anthers and their recovery on the pollen surface, Lipids, 34, 517–523.PubMedCrossRefGoogle Scholar
  35. 35.
    Garcia, R. E., and Mudd, J. B. (1978) Partial characterization of steryl ester biosynthesis in spinach leaves, Plant Physiol., 61, 357–360.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zimowski, Z. J., and Wojciechowski, Z. A. (1981) Partial purification and specificity of triacylglycerol sterol acyltransferase from Sinapsis alba, Phytochemistry, 20, 1799–1803.CrossRefGoogle Scholar
  37. 37.
    Bouvier-Nave, P., Benveniste, P., Oelkers, P., Sturley, S. L., and Schaller, H. (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase, Eur. J. Biochem., 267, 85–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Hartmann-Bouillon, M. A., and Benveniste, P. (1978) Sterol biosynthetic capability of purified membrane fractions from maize coleoptiles, Phytochemistry, 17, 1037–1042.CrossRefGoogle Scholar
  39. 39.
    Mudd, J. B. (1980) Sterol interconversions, Biochem. Plants, 4, 509–534.Google Scholar
  40. 40.
    Ullmann, P., Ury, A., Rimmele, D., Benveniste, P., and Bouvier-Nave, P. (1993) UDP-glucose sterol-ß-D-glucosyltransferase, a plasma membrane-bound enzyme of plants: enzymatic, properties and lipid dependence, Biochimie, 75, 713–723.PubMedCrossRefGoogle Scholar
  41. 41.
    Warnecke, D. C., Baltrusch, M., Buck, F., Wolter, F. P., and Heinz, E. (1997) UDP-glucose sterol glucosyltransferase: cloning and functional expression in Escherichia coli, Plant Mol. Biol., 35, 597–603.PubMedCrossRefGoogle Scholar
  42. 42.
    Peng, L., Kawagoe, Y., Hogan, P., and Delmer, D. (2002) Sitosterol-ß-glucoside as primer for cellulose synthesis in plants, Science, 295, 147–150.PubMedCrossRefGoogle Scholar
  43. 43.
    Palta, J. P., Whitaker, B. D., and Weiss, L. S. (1993) Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of solanum species, Plant Physiol., 103, 793–803.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Li, J., Nagpal, P., Witart, V., McMorris, T. C., and Chory, J. (1996) A role for brassinosteroids in light-dependent development of Arabidopsis, Science, 272, 398–401.PubMedCrossRefGoogle Scholar
  45. 45.
    Corio-Costet, M. F., Gerst, N., Benveniste, P., and Schuber, F. (1988) Inhibition by the fungicide fenpropimorph of cholesterol biosynthesis in 3T3 fibroblasts, Biochem. J., 256, 829–834.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Blunt, S. A., and Silver, J. C. (1991) Molecular cloning and characterization of two distinct hsp85 sequences from the steroid responsive fungus, Achlya ambisexualis, Curr. Genet., 19, 383–388.CrossRefGoogle Scholar
  47. 47.
    Bajguz, A. (2011) Brassinosteroids–occurrence and chemical structures in plants, in Brassinosteroids: A Class of Plant Hormone (Hayat, S., and Ahmad, A., eds.) Springer, pp. 1–27.CrossRefGoogle Scholar
  48. 48.
    Fujioka, S., and Yokota, T. (2003) Biosynthesis and metabolism of brassinosteroids, Annu. Rev. Plant Biol., 54, 137–164.PubMedCrossRefGoogle Scholar
  49. 49.
    Nemhauser, J. L., and Chory, J. (2004) BRing it on: new insights into the mechanism of brassinosteroid action, J. Exp. Bot., 55, 265–270.PubMedCrossRefGoogle Scholar
  50. 50.
    Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I., and Yoshida, S. (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice, Plant J., 33, 887–889.PubMedCrossRefGoogle Scholar
  51. 51.
    Friedrichsen, D. M., and Chory, J. (2001) Steroid signaling in plants: from the cell surface to the nucleus, BioEssays, 23, 1028–1036.PubMedCrossRefGoogle Scholar
  52. 52.
    Lisso, J., Steinhauser, D., Altmann, T., Kopka, J., and Mussig, C. (2005) Identification of brassinosteroid-related genes by means of transcript coresponse analyses, Nucleic Acids Res., 33, 2685–2696.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fridman, Y., and Savaldi-Goldstein, S. (2013) Brassinosteroids in growth control: how, when and where, Plant Sci., 209, 24–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Karnachuk, R. A., Golovatskaya, I. F., Efimova, M. V., and Khripach, V. A. (2002) The effect of 24-epibrassinolide on morphogenesis and hormone ratio in Arabidopsis seedlings under green light, Fiziol. Rast., 49, 591–595.Google Scholar
  55. 55.
    Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., and Okamoto, S. (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergetic relationship with gibberellin as well as auxin in light-growth hypocotyl elongation, Plant Growth Regul., 22, 259–271.CrossRefGoogle Scholar
  56. 56.
    Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., and Nogues, S. (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus, J. Exp. Bot., 55, 1135–1143.PubMedCrossRefGoogle Scholar
  57. 57.
    Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., and LamSon, P. T. (2012) Benefits of brassinosteroid crosstalk, Trends Plant Sci., 17, 594–605.PubMedCrossRefGoogle Scholar
  58. 58.
    Khripach, V. A., Zhabinskii, V. N., and Khripach, N. B. (2003) New practical aspects of brassinosteroids and results of their ten-year agricultural use in Russia and Belarus, in Brassinosteroids. Bioactivity and Crop Productivity (Hayat, S., and Ahmad, A., eds.) Kluwer, Dordrecht, pp. 189–230.Google Scholar
  59. 59.
    Normen, L., Dutta, P., Lia, A., and Anderßson, H. (2000) Soy sterol esters and β-sitostanol ester as inhibitors of cholesterol absorption in the human small bowel, Am. J. Clin. Nutr., 71, 908–913.PubMedGoogle Scholar
  60. 60.
    Shaller, H. (2004) New aspects of sterol biosynthesis in growth and development of higher plants, Plant Physiol. Biochem., 42, 465–476.CrossRefGoogle Scholar
  61. 61.
    Moreau, P., Hartmann, M. A., Perret, A. M., SturboisBalcerzak, B., and Cassagne, C. (1998) Transport of sterols to the plasma membrane of leek seedlings, Plant Physiol., 117, 931–937.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Men, S., Boutte, Y., Ikeda, Y., Li, X., Palme, K., Stierhof, Y. D., Hartmann, M. A., Moritz, T., and Grebe, M. (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity, Nat. Cell Biol., 10, 237–244.PubMedCrossRefGoogle Scholar
  63. 63.
    Busquets, A., Keim, V., Closa, M., Del Arco, A., Boronat, A., Arro, M., and Ferrer, A. (2008) Arabidopsis thaliana contains a single gene encoding squalene synthase, Plant Mol. Biol., 67, 25–36.PubMedCrossRefGoogle Scholar
  64. 64.
    Leivar, P., Gonzalez, V. M., Castel, S., Trelease, R. N., Lopez-Iglesias, C., Arro, M., Boronat, A., Campos, N., Ferrer, A., and Fernandez-Busquets, X. (2005) Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutarylcoenzyme A reductase, Plant Physiol., 137, 57–69.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sawai, S., and Saito, K. (2011) Triterpenoid biosynthesis and engineering in plants, Front. Plant Sci., doi: 10.3389/fpls.2011.00025.Google Scholar
  66. 66.
    Ohyamaa, K., Suzukia, M., Kikuchia, J., Saitoa, K., and Muranakaa, T. (2009) Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis, Proc. Natl. Acad. Sci. USA, 106, 725–730.CrossRefGoogle Scholar
  67. 67.
    Hemmerlin, A., Gerber, E., Feldtrauer, J. F., Wentzinger, L., Hartmann, M. A., Tritsch, D., Hoeffler, J. F., Rohmer, M., and Bach, T. J. (2004) A review of tobacco BY-2 cells as an excellent system to study the synthesis and function of sterols and other isoprenoids, Lipids, 39, 723–735.PubMedGoogle Scholar
  68. 68.
    Diener, A. C., Li, H., Zou, W. X., Whoriskey, W. J., Nes, W. D., and Fink, G. R. (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants, Plant Cell, 12, 853–870.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Schaeffer, A., Bouvier-Nave, P., Benveniste, P., and Schaller, H. (2000) Plant sterol-C24-methyl transferases: different profiles of tobacco transformed with SMT1 or SMT2, Lipids, 35, 263–269.PubMedCrossRefGoogle Scholar
  70. 70.
    Neelakandan, A. K., Song, Z., Wang, J., Richards, M. H., Wub, X., Valliyodan, B., Nguyen, H. T., and Nes, W. D. (2009) Cloning, functional expression and phylogenetic analysis of plant sterol 24C-methyltransferases involved in sitosterol biosynthesis, Phytochemistry, 70, 1982–1998.PubMedCrossRefGoogle Scholar
  71. 71.
    Roitelman, J., Olender, E. H., Bar-Nun, S., Dunn, W. A., and Simoni, R. D. (1992) Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum, J. Cell Biol., 117, 959–973.PubMedCrossRefGoogle Scholar
  72. 72.
    Bach, T. J., Weber, T., and Motel, A. (1990) Some properties of enzymes involved in the biosynthesis and metabolism of 3-hydroxy-3-methylglutaryl-CoA plants, in Recent Advances in Phytochemistry. Biochemistry of the Mevalonic Acid Pathway to Terpenoids (Towers, G. H. N., and Stafford, H. A., eds.) Vol. 24, Plenum Press, N. Y., pp. 1–82.CrossRefGoogle Scholar
  73. 73.
    Monfar, M., Caelles, C., Bafcells, L., Ferrer, A., Hegardt, E. G., and Boronat, A. (1990) Molecular cloning and characterization of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase, in Recent Advances in Phytochemistry. Biochemistry of the Mevalonic Acid Pathway to Terpenoids (Towers, G. H. N., and Stafford, H. A., eds.) Vol. 24, Plenum Press, N. Y., pp. 83–97.CrossRefGoogle Scholar
  74. 74.
    Chye, M-L., Tan, C-T., and Chua, N-H. (1992) Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmgl and hmg3 are differentially expressed, Plant Mol. Biol., 19, 473–484.PubMedCrossRefGoogle Scholar
  75. 75.
    Neelakandan, A. K., Nguyen, T. M., Kumar, R., Tran, L. S., Guttikonda, S. K., Quach, T. N., Aldrich, D. L., Nes, W. D., and Nguyen, H. T. (2010) Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis, Plant Mol. Biol., 74, 503–518.PubMedCrossRefGoogle Scholar
  76. 76.
    Choi, D., Ward, B. L., and Bostock, R. M. (1992) Differential induction and suppression of potato 3hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid, Plant Cell, 4, 1333–1344.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Stermer, B. A., Bianchini, G. M., and Korth, K. L. (1994) Regulation of HMG-CoA reductase activity in plants, J. Lipid Res., 35, 1133–1140.PubMedGoogle Scholar
  78. 78.
    Bach, T. J., Lichtenthaler, H. K., and Retey, J. (1980) Properties of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase (EC 1.1.1.34) from radish seedlings and some aspects of its regulation, in Biogenesis and Function of Plant Lipids (Mazliak, P., Benveniste, P., Costes, C., and Douce, R., eds.) Elsevier, Amsterdam, pp. 355–362.Google Scholar
  79. 79.
    Rui, X., Caiqin, L., Wangjin, L., Juan, D., Zehuai, W., and Jianguo, L. (2012) 3-Hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) is highly associated with the cell division during the early stage of fruit development which determines the final fruit size in Litchi chinensis, Gene, 498, 28–35.PubMedCrossRefGoogle Scholar
  80. 80.
    Nieto, B., Fores, O., Arro, M., and Ferrer, A. (2009) Arabidopsis 3-hydroxy-3-methylglutaryl-CoA reductase is regulated at the post-translational level in response to alterations of the sphingolipid and the sterol biosynthetic pathways, Phytochemistry, 70, 53–59.PubMedCrossRefGoogle Scholar
  81. 81.
    Boutte, Y., and Grebe, M. (2009) Cellular processes relying on sterol function in plants, Curr. Opin. Plant Biol., 12, 705–713.PubMedCrossRefGoogle Scholar
  82. 82.
    Shi, J., Gonzales, R. A., and Bhattacharyya, M. K. (1996) Identification and characterization of an S-adenosyl-Lmethionine D24-sterol C-methyltransferase cDNA from soybean, J. Biol. Chem., 271, 9384–9389.PubMedCrossRefGoogle Scholar
  83. 83.
    Bouvier-Nave, P., Husselstein, T., Desprez, T., and Benveniste, P. (1997) Identification of cDNAs encoding sterol methyl-transferases involved in the second methylation step of plant sterol biosynthesis, Eur. J. Biochem., 246, 518–529.PubMedCrossRefGoogle Scholar
  84. 84.
    Schaller, H., Bouvier-Nave, P., and Benveniste, P. (1998) Overexpression of an Arabidopsis cDNA encoding a sterolC24(1)-methyltransferase in tobacco modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction, Plant Physiol., 118, 461–469.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nes, W. D., Song, Z., Dennis, A. L., Zhou, W., Nam, J., and Miller, M. B. (2003) Biosynthesis of phytosterols. Kinetic mechanism for the enzymatic C-methylation of sterols, J. Biol. Chem., 278, 34505–34516.PubMedCrossRefGoogle Scholar
  86. 86.
    Carland, F., Fujioka, S., and Nelson, T. (2010) The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products, Plant Physiol., 153, 741–756.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Subramaniam, K., Liu, B., Ye, Z., Abbo, S., and Ueng, P. P. (1999) Isolation of a gene coding for a putative sterol C-24 methyltransferase in wheat, Wheat Inform. Service, 89, 17–22.Google Scholar
  88. 88.
    Bouvier-Nave, P., Husselstein, T., and Benveniste, P. (1998) Two families of sterol methyltransferases are involved in the first and the second methylation steps of plant sterol biosynthesis, Eur. J. Biochem., 256, 88–96.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhou, W., and Nes, W. D. (2003) Sterol methyltransferase 2: purification, properties, and inhibition, Arch. Biochem. Biophys., 420, 18–34.PubMedCrossRefGoogle Scholar
  90. 90.
    Carland, F. M., Fujioka, S., Takatsuto, S., Yoshida, S., and Nelson, T. (2002) The identification of CVP1 reveals a role for sterols in vascular patterning, Plant Cell, 14, 2045–2058.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Schaeffer, A., Bronner, R., Benveniste, P., and Schaller, H. (2001) The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by sterol methyltransferase 2, Plant J., 25, 605–615.PubMedCrossRefGoogle Scholar
  92. 92.
    Hase, Y., Fujioka, S., Yoshida, S., Sun, G., Umeda, M., and Tanaka, A. (2005) Ectopic endoreduplication caused by sterol alteration results in serrated petals in Arabidopsis, J. Exp. Bot., 56, 1263–1268.PubMedCrossRefGoogle Scholar
  93. 93.
    Sitbon, F., and Jonsson, L. (2001) Sterol composition and growth of transgenic tobacco plants expressing type-1 and type-2 sterol methyltransferases, Planta, 212, 568–572.PubMedCrossRefGoogle Scholar
  94. 94.
    Nes, W. R., and McKean, M. L. (1977) Biochemistry of Steroids and Other Isopentenoids, University Park Press, Baltimore, MD.Google Scholar
  95. 95.
    Skaggs, B. A., Alexander, J. F., Pierson, C. A., Schweitzer, K. S., Chun, K. T., Koegel, C., Barbuch, R., and Bard, M. (1996) Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis, Gene, 169, 105–109.PubMedCrossRefGoogle Scholar
  96. 96.
    Benveniste, P. (2002) Sterol metabolism, in Arabidopsis Book, 1, e0004.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Schaller, H., Gondet, L., Maillot-Vernier, P., and Benveniste, P. (1994) Sterol overproduction is the biochemical basis of resistance to a triazole in calli from a tobacco mutant, Planta, 194, 295–305.CrossRefGoogle Scholar
  98. 98.
    Schuler, I., Milon, A., Nakatani, Y., Ourisson, G., Albrecht, A. M., Benveniste, P., and Hartman, M. A. (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers, Proc. Natl. Acad. Sci. USA, 88, 6926–6930.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Senthil-Kumar, M., Wang, K., and Mysore, K. S. (2013) AtCYP710A1 gene-mediated stigmasterol production plays a role in imparting temperature stress tolerance in Arabidopsis thaliana, Plant Signal. Behav., e23142.Google Scholar
  100. 100.
    Griebel, T., and Zeier, J. (2010) A role for beta-sitosterol to stigmasterol conversion in plant–pathogen interactions, Plant J., 63, 254–268.PubMedCrossRefGoogle Scholar
  101. 101.
    Han, P. P., Zhou, J., and Yuan, Y. J. (2009) Analysis of phospholipids, sterols, and fatty acids in Taxus chinensis var. mairei cells in response to shear stress, Biotechnol. Appl. Biochem., 54, 105–112.PubMedCrossRefGoogle Scholar
  102. 102.
    Bloch, K. E. (1983) Sterol structure and membrane function, Crit. Rev. Biochem., 14, 47–82.CrossRefGoogle Scholar
  103. 103.
    Krajewsky-Bertrand, M.-A., Milon, A., and Hartmann, M.-A. (1992) Deuterium-NMR investigation of plant sterol effects on soybean phosphatidylcholine acyl chain ordering, Chem. Phys. Lipids, 63, 235–241.CrossRefGoogle Scholar
  104. 104.
    Hartmann, M. A. (1998) Plant sterols and the membrane environment, Trends Plant Sci., 3, 170–175.CrossRefGoogle Scholar
  105. 105.
    Hodzic, A., Rappolt, M., Amenitsch, H., Laggner, P., and Pabs, G. (2008) Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol, Biophys. J., 94, 3935–3944.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Augustin, J. M., Kuzina, V., Andersen, S. B., and Bak, S. (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins, Phytochemistry, 72, 435–457.PubMedCrossRefGoogle Scholar
  107. 107.
    Lorent, J. H., Quetin-Leclercq, J., and Mingeot-Leclercq, M. P. (2014) The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells, Org. Biomol. Chem., 28, 8803–8822.CrossRefGoogle Scholar
  108. 108.
    Gauthier, C., Legault, J., Girard-Lalancette, K., Mshvildadze, V., and Pichette, A. (2009) Hemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupaneand oleanane-type saponins, Bioorg. Med. Chem., 17, 2002–2008.PubMedCrossRefGoogle Scholar
  109. 109.
    Moses, T., Papadopoulou, K. K., and Osbourn, A. (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives, Crit. Rev. Biochem. Mol. Biol., 49, 439–462.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Simons, K., and Van Meer, G. (1988) Lipid sorting in epithelial cells, Biochemistry, 27, 6197–6202.PubMedCrossRefGoogle Scholar
  111. 111.
    Sonnino, S., and Prinetti, A. (2013) Membrane domains and the “lipid raft” concept, Curr. Med. Chem., 20, 4–21.PubMedGoogle Scholar
  112. 112.
    Furt, F., Lefebvre, B., Cullimore, J., Bessoule, J. J., and Mongrand, S. (2007) Plant lipid rafts: fluctuat nec mergitur, Plant Signal. Behav., 2, 508–511.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Simon-Plas, F., Perraki, A., Bayer, E., Gerbeau-Pissot, P., and Mongrand, S. (2011) An update on plant membrane rafts, Curr. Opin. Plant Biol., 14, 642–649.PubMedCrossRefGoogle Scholar
  114. 114.
    Cacas, J. L., Furt, F., Le Guedard, M., Schmitter, J. M., Bure, C., Gerbeau-Pissot, P., Moreau, P., Bessoule, J. J., Simon-Plas, F., and Mongrand, S. (2012) Lipids of plant membrane rafts, Prog. Lipid Res., 51, 272–299.PubMedCrossRefGoogle Scholar
  115. 115.
    Malinsky, J., Opekarova, M., Grossmann, G., and Tanner, W. (2013) Membrane microdomains, rafts, and detergentresistant membranes in plants and fungi, Annu. Rev. Plant Biol., 64, 501–529.PubMedCrossRefGoogle Scholar
  116. 116.
    Lingwood, D., and Simons, K. (2007) Lipid rafts as a membrane-organizing principle, Nat. Protoc., 2, 2159–2165.PubMedCrossRefGoogle Scholar
  117. 117.
    Borner, G. H., Sherrier, D. J., Weimar, T., Michaelson, L. V., Hawkins, N. D., Macaskill, A., Napier, J. A., Beale, M. H., Lilley, K. S., and Dupree, P. (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts, Plant Physiol., 137, 104–116.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kierszniowska, S., Seiwert, B., and Schulze, W. X. (2009) Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-betacyclodextrin and quantitative proteomics, Mol. Cell Proteom., 8, 612–623.CrossRefGoogle Scholar
  119. 119.
    Lefebvre, B., Furt, F., Hartmann, M. A., Michaelson, L. V., Carde, J. P., Sargueil Boiron, F., Rossignol, M., Napier, A. J., Cullimore, J., Bessoule, J. J., and Mongrand, S. (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system, Plant Physiol., 144, 402–418.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J., and Lampi, A.-M. (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition, J. Sci. Food Agric., 80, 939–966.CrossRefGoogle Scholar
  121. 121.
    Liu, J., and Nes, W. D. (2009) Steroidal triterpenes: design of substrate-based inhibitors of ergosterol and sitosterol synthesis, Molecules, 14, 4690–4706.PubMedCrossRefGoogle Scholar
  122. 122.
    Carmona-Salazar, L. E., Hafidi, M., EnriquezArredondo, C., Vazquez-Vazquez, C., Gonzalez de la Vara, L. E., and Gavilanes-Ruiz, M. (2011) Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues, Anal. Biochem., 417, 220–227.PubMedCrossRefGoogle Scholar
  123. 123.
    Ozolina, N. V., Nesterkina, I. S., Kolesnikova, E. V., Salyaev, R. K., Nurminsky, V. N., Rakevich, A. L., Martynovich, E. F., and Chernyshov, M. Y. (2013) Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains, Planta, 237, 859–871.PubMedCrossRefGoogle Scholar
  124. 124.
    Puri, V., Watanabe, R., Dominguez, M., Sun, X., Wheatley, C. L., Marks, D. L., and Pagano, R. E. (1999) Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases, Nat. Cell Biol., 1, 386–388.PubMedCrossRefGoogle Scholar
  125. 125.
    Pagano, R. E., Puri, V., Dominguez, M., and Marks D. L. (2000) Membrane traffic in sphingolipid storage diseases, Traffic, 1, 807–815.PubMedCrossRefGoogle Scholar
  126. 126.
    Vance, J. E. (2006) Lipid imbalance in the neurological disorder, Niemann–Pick C disease, FEBS Lett., 580, 5518–5524.PubMedCrossRefGoogle Scholar
  127. 127.
    Guan, X. L., Cleiton, M. S., Pichler, H., Dewhurst, G. L., Schaad, O., Kajiwara, K., Wakabayashi, H., Ivanova, T., Castillon, G. A., Piccolis, M., Abe, F., Loewith, R., Funato, K., Wenk, M. R., and Riezman, H. (2009) Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology, Mol. Biol. Cell, 20, 2083–2095.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kim, B., Lee, H., Oh, C. J., Lee, H. Y., Eum, H. L., Kim, H. S., Hong, Y. P., Lee, Y., Choe, S., An, C. S., and Choi, S. B. (2010) Postembryonic seedling lethality in the steroldeficient Arabidopsis cyp51A2 mutant is partially mediated by the composite action of ethylene and reactive oxygen species, Plant Physiol., 152, 192–205.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Valitova, J., Kotlova, E., Novikov, A. V., Shavarda, A. L., Artemenko, K. A., Zubarev, R. A., and Minibayeva, F. (2010) Binding of sterols affects membrane functioning and sphingolipid composition in wheat roots, Biochemistry (Moscow), 75, 554–561.CrossRefGoogle Scholar
  130. 130.
    Valitova, J., Sulkarnayeva, A., Kotlova, E., Ponomareva, A., Mukhitova, F., Murtazina, L., Ryzhkina, I., Beckett, R., and Minibayeva, F. (2014) Sterol binding by methyl-ßcyclodextrin and nystatin–comparative analysis of biochemical and physiological consequences for plants, FEBS J., 281, 2051–2060.PubMedCrossRefGoogle Scholar
  131. 131.
    Cheng, J., Ohsaki, Y., Tauchi-Sato, K., Fujita, A., and Fujimoto, T. (2006) Cholesterol depletion induces autophagy, Biochem. Biophys. Res. Commun., 351, 246–252.PubMedCrossRefGoogle Scholar
  132. 132.
    Grandmougin-Ferjani, A., Schuler-Muller, I., and Hartmann, M. A. (1997) Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids, Plant Physiol., 113, 163–174.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Azpiroz, R., Wu, Y., LoCascio, J. C., and Feldmann, K. A. (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation, Plant Cell, 10, 219–230.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B. S., and Sangwan, R. S. (2001) Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bull mutant, defective in the delta 7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis, Planta, 212, 659–672.PubMedCrossRefGoogle Scholar
  135. 135.
    He, Z., Wang, Z. Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., and Chory, J. (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1, Science, 288, 2360–2363.PubMedCrossRefGoogle Scholar
  136. 136.
    Lajoie, P., and Nabi, I. R. (2010) Lipid rafts, caveolae, and their endocytosis, Int. Rev. Cell Mol., 282, 135–163.CrossRefGoogle Scholar
  137. 137.
    Souter, M., Topping, J., Pullen, M., Friml, J., Palme, K., Hackett, R., Grierson, D., and Lindsey, K. (2002) Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling, Plant Cell, 14, 1017–1031.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Willemsen, V., Friml, J., Grebe, M., Van den Toorn, A., Palme, K., and Scheres, B. (2003) Cell polarity and PIN protein positioning in Arabidopsis require sterol methyltransferase 1 function, Plant Cell, 15, 612–625.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Titapiwatanakun, B., and Murphy, A. S. (2009) ABCB19/PGP19 stabilizes PIN1 in membrane microdomains in Arabidopsis, J. Exp. Bot., 60, 1093–1107.PubMedCrossRefGoogle Scholar
  140. 140.
    Betts, H., and Moore, I. (2003) Plant cell polarity: the insand-outs of sterol transport, Curr. Biol., 13, 781–783.CrossRefGoogle Scholar
  141. 141.
    Beck, J. G., Mathieu, D., Loudet, C., Buchoux, S., and Dufourc, E. J. (2007) Plant sterols in “rafts”: a better way to regulate membrane thermal shocks, FASEB J., 21, 1714–1723.PubMedCrossRefGoogle Scholar
  142. 142.
    Chirkova, T. V. (2002) In Physiological Bases of Plant Resistance, St. Petersburg State University, St. Petersburg, p.244.Google Scholar
  143. 143.
    Alekseeva, V. Ya., Gordon, L. Kh., Loseva, N. L., Rakhimova, G. G., and Tsentsevitsky, A. N. (2006) The effects of modulators of plasmalemma ion permeability on respiration and heat production by wheat roots, Tsitologiya, 48, 569–577.Google Scholar
  144. 144.
    Lygin, A. V., Gordon, L. Kh., Alekseeva, V. Ya., and Balashova, T. K. (1990) The change in sterol content and fatty acid composition of phospholipids during active ageing of cut-off wheat roots, Fiziol. Biokhim. Rast., 22, 581–586.Google Scholar
  145. 145.
    Lygin, A. V., Ivanova, A. B., Burtayeva, T. E., Gordon, L. Kh., and Romanova, T. D. (1990) Respiratory gas exchange and the content of structural lipids during callus cell growth, in Regulation of Enzyme Activity in Plants [in Russian], Gorky State University, Gorky, pp. 55–61.Google Scholar
  146. 146.
    Gordon, L. Kh. (1992) Respiratory gas exchange and the content of structural lipids during callus cell growth, Fiziol. Biokhim. Kult. Rast., 24, 24–29.Google Scholar
  147. 147.
    Uemura, M., and Steponkus, P. L. (1999) Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane, J. Plant Res., 112, 245–254.CrossRefGoogle Scholar
  148. 148.
    Makarenko, S. P., Dudareva, L. V., Katyshev, A. I., Konenkina, T. A., Nazarova, A. V., Rudikovskaya, E. G., Sokolova, N. A., Chernikova, V. V., and Konstantinov, Yu. M. (2010) Effects of low temperatures on fatty acid composition of cereal species with different cold resistance, Biol. Membr., 27, 482–488.Google Scholar
  149. 149.
    Minami, A., Furuto, A., and Uemura, M. (2010) Dynamic compositional changes of detergent-resistant plasma membrane microdomains during plant cold acclimation, Plant Signal. Behav., 5, 1115–1118.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Uemura, M., and Steponkus, P. L. (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance, Plant Physiol., 104, 479–496.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Dufourc, E. J. (2008) The role of phytosterols in plant adaptation to temperature, Plant Signal. Behav., 3, 133–134.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kendall, E. J., and McKersie, B. D. (1989) Free radical and freezing injury to cell membranes of winter wheat, Physiol. Plant, 76, 86–94.CrossRefGoogle Scholar
  153. 153.
    Hung, S.-H., Yu, C.-W., and Lin, C. H. (2005) Hydrogen peroxide functions as a stress signal in plants, Bot. Bull. Acad. Sin., 46, 1–10.Google Scholar
  154. 154.
    Chinnusamy, V., Zhu, J., and Zhu, J.-K. (2007) Cold stress regulation of gene expression in plants, Trends Plant Sci., 12, 444–451.PubMedCrossRefGoogle Scholar
  155. 155.
    Weng, X. C., and Wang, W. (2000) Antioxidant activity of compounds isolated from Salvia plebeia, Food Chem., 71, 489–493.CrossRefGoogle Scholar
  156. 156.
    Wang, T., Hicks, K. B., and Moreau, R. (2002) Antioxidant activity of phytosterols, oryzanol, and other phytosterol conjugates, J. Am. Oil Chem. Soc., 79, 1201–1206.CrossRefGoogle Scholar
  157. 157.
    Vivancos, M., and Moreno, J. J. (2005) Beta-sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages, Free Radic. Biol. Med., 39, 91–97.PubMedCrossRefGoogle Scholar
  158. 158.
    Pose, D., Castanedo, I., Borsani, O., Nieto, B., Rosado, A., Taconnat, L., Ferrer, A., Dolan, L., Valpuesta, V., and Botella, M. A. (2009) Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species, Plant J., 59, 63–76.PubMedCrossRefGoogle Scholar
  159. 159.
    Wegener, A., Gimbel, W., Werner, T., Hani, J., Ernst, D., and Sandermann, H., Jr. (1997) Molecular cloning of ozone-inducible protein from Pinus sylvestris L. with high sequence similarity to vertebrate 3-hydroxy-3-methylglutaryl-CoA-synthase, Biochim. Biophys. Acta, 1350, 247–252.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • J. N. Valitova
    • 1
  • A. G. Sulkarnayeva
    • 1
  • F. V. Minibayeva
    • 1
    • 2
    Email author
  1. 1.Kazan Institute of Biochemistry and BiophysicsRussian Academy of SciencesKazanRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations