Biochemistry (Moscow)

, Volume 81, Issue 8, pp 785–793 | Cite as

Structural characteristics and catalytic mechanism of Bacillus β-propeller phytases

  • N. P. BalabanEmail author
  • A. D. Suleimanova
  • L. R. Valeeva
  • E. V. Shakirov
  • M. R. Sharipova


ß-Propeller phytases of Bacillus are unique highly conservative and highly specific enzymes capable of cleaving insoluble phytate compounds. In this review, we analyzed data on the properties of these enzymes, their differences from other phytases, and their unique spatial structures and substrate specificities. We considered influences of different factors on the catalytic activity and thermostability of these enzymes. There are few data on the hydrolysis mechanism of these enzymes, which makes it difficult to analyze their mechanism of action and their final products. We analyzed the available data on hydrolysis by ß-propeller phytases of calcium complexes with myo-inositol hexakisphosphate.


β-propeller phytases calcium-binding site myo-inositol hexakisphosphate calcium–phytate complex catalytic mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shears, S. B., and Turner, B. L. (2007) Nomenclature and terminology of inositol phosphates: clarification and a glossary of terms, in Inositol Phosphates. Linking Agriculture and the Environment (Turner, B. L., Richardson, A. E., and Mullaney, E. J., eds.) CABI, pp. 1–7.CrossRefGoogle Scholar
  2. 2.
    Kim, O.-H., Kim, Y.-O., Shim, J.-H., Jung, Y.-S., Jung, W.-J., Choi, W.-C., Lee, H., Lee, S.-J., Kim, K.-K., Auh, J.-H., Kim, H., Kim, J.-W., Oh, T.-K., and Oh, B.-C. (2010) ß-Propeller phytase hydrolyzes insoluble Ca2+-phytate salts and completely abrogates the ability of phytate to chelate metal ions, Biochemistry, 49, 10216–10227.CrossRefPubMedGoogle Scholar
  3. 3.
    Osman, A. A., Babu, P. R., Venu, K., Rao, K. V., and Reddy, V. D. (2012) Prediction of substrate-binding site and elucidation of catalytic residue of a phytase from Bacillus sp., Enzyme Microb. Tech., 51, 35–39.CrossRefGoogle Scholar
  4. 4.
    Oh, B.-C., Choi, W.-C., Park, S., Kim, Y.-O., and Oh, T.K. (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases, Appl. Microbiol. Biotechnol., 63, 362–372.CrossRefPubMedGoogle Scholar
  5. 5.
    Ha, N.-C., Oh, B.-C., Shin, S., Kim, H.-J., Oh, T.-K., Kim, Y.-O., Choi, K.-Y., and Oh, B.-H. (2000) Crystal structures of a novel, htermostable phytase in partially and fully calcium-loaded states, Nature Struct. Mol. Biol., 7, 147–153.CrossRefGoogle Scholar
  6. 6.
    Yao, M.-Z., Zhang, Y.-H., Lu, W.-L., Hu, M.-Q., Wang, W., and Liang, A.-H. (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications, Appl. Microbiol., 112, 1–14; doi: 10.1111/j.1365-2672.2011.05181.x. Epub 2011, Nov.25.CrossRefGoogle Scholar
  7. 7.
    Fan, C. M., Wang, Y. H., Fu, C. Y., and Zheng, Y. F. (2013) Fingerprint motifs of phytases, Afr. J. Biotechnol., 12, 1138–1147.Google Scholar
  8. 8.
    Ullah, A. H., and Dischinger, H. C., Jr. (1993) Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing, Biochem. Biophys. Res. Commun., 192, 747–753.CrossRefPubMedGoogle Scholar
  9. 9.
    Kostrewa, D., Gruninger-Leitch, F., D’Arcy, A., Broger, C., Mitchell, D., and Van Loon, A. P. (1997) Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution, Nature Struct. Biol., 4, 185–190.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee, D. C., Cottrill, M. A., Forsberg, C. W., and Jia, Z. (2003) Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase, J. Biol. Chem., 278, 31412–31418.CrossRefPubMedGoogle Scholar
  11. 11.
    Vohra, A., and Satyanarayana, T. (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications, Crit. Rev. Biotechnol., 23, 29–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Mullaney, E. J., and Ullah, A. H. (2005) Conservation of cysteine residues in fungal histidine acid phytases, Biochem. Biophys. Res. Commun., 328, 404–408.CrossRefPubMedGoogle Scholar
  13. 13.
    Klabunde, T., Strater, N., Frohlich, R., Witzel, H., and Krebs, B. (1996) Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures, J. Mol. Biol., 259, 737–748.CrossRefPubMedGoogle Scholar
  14. 14.
    Schenk, G., Guddat, L. W., Ge, Y., Carrington, L. E., Hume, D. A., Hamilton, S., and De Jersey, J. (2000) Identification of mammalian-like purple acid phosphatases in a wide range of plants, Gene, 250, 117–125.CrossRefPubMedGoogle Scholar
  15. 15.
    Olczak, M., Morawiecka, B., and Watorek, W. (2003) Plant purple acid phosphatases–genes, structures and biological function, Acta Biochim. Pol., 50, 1245–1256.PubMedGoogle Scholar
  16. 16.
    Dionisio, G., Holm, P. B., and Brinch-Pedersen, H. (2007) Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination, Plant Biotechnol. J., 5, 325–338.CrossRefPubMedGoogle Scholar
  17. 17.
    Chu, H. M., Guo, R. T., Lin, T. W., Chou, C. C., Shr, H. L., Lai, H. L., Tang, T. Y., Cheng, K. J., Selinger, B. L., and Wang, A. H. (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis, Structure, 12, 2015–2024.CrossRefPubMedGoogle Scholar
  18. 18.
    Puhl, A. A., Greiner, R., and Selinger, L. B. (2008) A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate, Int. J. Biochem. Cell Biol., 40, 2053–2064.CrossRefPubMedGoogle Scholar
  19. 19.
    Puhl, A. A., Gruninger, R. J., Greiner, R., Janzen, T. W., Mosimann, S. C., and Selinger, L. B. (2007) Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase, Protein Sci., 16, 1368–1378.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Greiner, R., Lim, B. L., Cheng, C., and Carlsson, N. G. (2007) Pathway of phytate dephosphorylation by beta-propeller phytases of different origins, Can. J. Microbiol., 53, 488–495.CrossRefPubMedGoogle Scholar
  21. 21.
    Fu, S., Sun, J., Qian, L., and Li, Z. (2008) Bacillus phytases: present scenario and future perspectives, Appl. Biochem. Biotechnol., 151, 1–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Lei, X. G., Weaver, J. D., Mullaney, E., Ullah, A. H., and Azain, M. J. (2013) Phytase, a new life for an “old” enzyme, Annu. Rev. Anim. Biosci., 1, 283–309.CrossRefPubMedGoogle Scholar
  23. 23.
    Tran, T. T., Mamo, G., Mattiasson, B., and Hatti-Kaul, R. (2010) A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli, J. Ind. Microbiol. Biotechnol., 37, 279–287.CrossRefPubMedGoogle Scholar
  24. 24.
    Zeng, Y.-F., Ko, T.-P., Lai, H.-L., Cheng, Y.-S., Wu, T.H., Ma, Y., Chen, C.-C., Yang, C.-S., Cheng, K.-J., Huang, C.-H., Guo, R.-T., and Liu, J.-R. (2011) Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate, J. Mol. Biol., 409, 214–224.CrossRefPubMedGoogle Scholar
  25. 25.
    Huang, H., Shao, N., Wang, Y., Luo, H., Yang, P., Zhou, Z., Zhan, Z., and Yao, B. (2009) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive, Appl. Microbiol. Biotechnol., 83, 249–259.CrossRefPubMedGoogle Scholar
  26. 26.
    Cheng, C., and Lim, B. L. (2006) Beta-propeller phytases in the aquatic environment, Arch. Microbiol., 185, 113.CrossRefGoogle Scholar
  27. 27.
    Shin, S., Ha, N.-C., Oh, B.-C., Oh, T.-K., and Oh, B.-H. (2001) Enzyme mechanism and catalytic property of betapropeller phytase, Structure, 9, 851–858.CrossRefPubMedGoogle Scholar
  28. 28.
    Oh, B.-C., Chang, B. S., Park, K.-H., Ha, N.-C., Kim, H.-K., Oh, B.-H., and Oh, T.-K. (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11, Biochemistry, 40, 9669–9676.CrossRefPubMedGoogle Scholar
  29. 29.
    Oh, B.-C., Kim, M. H., Yun, B.-S., Choi, W.-C., Park, S.C., Bae, S.-C., and Oh, T.-K. (2006) Ca2+-inositol phosphate chelation mediates the substrate specificity of betapropeller phytase, Biochemistry, 45, 9531–9539.CrossRefPubMedGoogle Scholar
  30. 30.
    Farhat-Khemakhem, A., Ali, M. B., Buohris, I., Khemakhem, B., Maguin, E., Bejar, S., and Chouayekh, H. (2013) Crucial role of Pro257 in the thermostability of Bacillus phytases: biochemical and structural investigation, Int. J. Biol. Macromol., 54, 9–15.CrossRefPubMedGoogle Scholar
  31. 31.
    Tran, T. T., Hashim, S. O., Gaber, Y., Mamo, G., Mattiasson, B., and Hatti-Kaul, R. (2011) Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability, J. Inorg. Biochem., 105, 1000–1007.CrossRefPubMedGoogle Scholar
  32. 32.
    Shim, J.-H., and Oh, B.-C. (2012) Characterization and application of calcium-dependent ß-propeller phytase from Bacillus amyloliquefaciens DS11, J. Agric. Food Chem., 60, 7532–7537.CrossRefPubMedGoogle Scholar
  33. 33.
    Tran, T. T., Mamo, G., Buxo, L., Le, N. N., Gaber, Y., Mattiasson, B., and Hatti-Kaul, R. (2011) Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu, Enzyme Microb. Technol., 49, 177–182.CrossRefPubMedGoogle Scholar
  34. 34.
    Kerovuo, J., Lappalainen, I., and Reinikainen, T. (2000) The metal dependence of Bacillus subtilis phytase, Biochem. Biophys. Res. Commun., 268, 365–369.CrossRefPubMedGoogle Scholar
  35. 35.
    Farhat, A., Chouayekh, H., Farhat, M. B., Bouchaala, K., and Bejar, S. (2008) Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme, Mol. Biotechnol., 40, 127–135.CrossRefPubMedGoogle Scholar
  36. 36.
    Rao, K. V., Rao, T. P., and Reddy, V. D. (2009) Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview, Crit. Rev. Biotechnol., 29, 182–198.CrossRefPubMedGoogle Scholar
  37. 37.
    Adeola, O., and Cowienson, A. J. (2011) Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production, J. Anim. Sci., 89, 3189–3218.CrossRefPubMedGoogle Scholar
  38. 38.
    Kerovuo, J., Rouvinen, J., and Hatzack, F. (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism, Biochem. J., 352, 623–628.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. P. Balaban
    • 1
    Email author
  • A. D. Suleimanova
    • 1
  • L. R. Valeeva
    • 1
  • E. V. Shakirov
    • 1
    • 2
  • M. R. Sharipova
    • 1
  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia
  2. 2.University of Texas at AustinAustinUSA

Personalised recommendations