Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 6, pp 549–564 | Cite as

Molecular and cellular bases of iron metabolism in humans

  • I. V. MiltoEmail author
  • I. V. Suhodolo
  • V. D. Prokopieva
  • T. K. Klimenteva
Review

Abstract

Iron is a microelement with the most completely studied biological functions. Its wide dissemination in nature and involvement in key metabolic pathways determine the great importance of this metal for uniand multicellular organisms. The biological role of iron is characterized by its indispensability in cell respiration and various biochemical processes providing normal functioning of cells and organs of the human body. Iron also plays an important role in the generation of free radicals, which under different conditions can be useful or damaging to biomolecules and cells. In the literature, there are many reviews devoted to iron metabolism and its regulation in proand eukaryotes. Significant progress has been achieved recently in understanding molecular bases of iron metabolism. The purpose of this review is to systematize available data on mechanisms of iron assimilation, distribution, and elimination from the human body, as well as on its biological importance and on the major iron-containing proteins. The review summarizes recent ideas about iron metabolism. Special attention is paid to mechanisms of iron absorption in the small intestine and to interrelationships of cellular and extracellular pools of this metal in the human body.

Key words

oxidized/reduced intracellular/extracellular heme/nonheme exogenous/endogenous iron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lauffer, R. B. (1992) Iron and Human Disease, CRC Press, London-Tokyo.Google Scholar
  2. 2.
    Goswami, T., Rolfs, A., and Hediger, M. A. (2002) Iron transport: emerging roles in health and disease, Biochem. Cell. Biol., 80, 679–689.PubMedCrossRefGoogle Scholar
  3. 3.
    Shafran, L. M., Pykhteeva, E. G., and Shitko, E. S. (2012) System of iron transport in the cells: physiology and toxicology of absorption from food by intestinal enterocytes, Sovrem. Probl. Toksikol., 2, 5–16.Google Scholar
  4. 4.
    Grogan, G. (2010) Cytochromes P450: exploiting diversity and enabling application as biocatalysts, Curr. Opin. Chem. Biol., 15, 1–8.Google Scholar
  5. 5.
    Wood, R. J., and Han, O. (1998) Recently identified molecular aspects of intestinal iron absorption, J. Nutr., 66, 1841–1844.Google Scholar
  6. 6.
    Edison, E. S., Bajel, A., and Chandy, M. (2008) Iron homeostasis: new players, newer insights, Eur. J. Haematol., 81, 411–424.PubMedCrossRefGoogle Scholar
  7. 7.
    Ermolenko, V. M., and Filatova, N. N. (2004) Physiology of iron metabolism, Anemia, 1, 3–10.Google Scholar
  8. 8.
    Jomova, K., Vondrakova, D., Lawson, M., and Valko, M. (2010) Metals, oxidative stress and neurodegenerative disorders, Mol. Cell. Biochem., 345, 91–104.PubMedCrossRefGoogle Scholar
  9. 9.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., and Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell. Biol., 39, 44–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Tandara, L., and Salamunic, I. (2012) Iron metabolism: current facts and future directions, Biochem. Med., 22, 311328.Google Scholar
  11. 11.
    Aisen, P., Enns, C., and Wessling-Resnick, M. (2001) Chemistry and biology of eukaryotic iron metabolism, Int. J. Biochem. Cell. Biol., 33, 940–959.PubMedCrossRefGoogle Scholar
  12. 12.
    Watt, R. K. (2010) Oxido-reduction is not the only mechanism allowing ions traverse the ferritin protein shell, Biochim. Biophys. Acta, 1800, 745–759.PubMedCrossRefGoogle Scholar
  13. 13.
    Huang, X., O’Brien, P. J., and Templeton, D. M. (2006) Mitochondrial involvement in genetically determined transition metal toxicity: I. Iron toxicity, Chem. Biol. Interact., 163, 68–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Shi, H., Bencze, K. Z., Stemmler, T. L., and Philpott, C. C. (2008) A cytosolic iron chaperone that delivers iron to ferritin, Science, 320, 1207–1210.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lubyanova, I. P. (2010) Modern concepts on the iron metabolism from the standpoint of an occupational pathologist, Aktual. Probl. Transport. Med., 2, 47–57.Google Scholar
  16. 16.
    Conrad, M. E., and Umbreit, J. N. (1993) Iron absorption: the mucin-mobilferrin-integrin pathway for metal absorption, Am. J. Hemat., 42, 67–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Lapin, A. (2002) Soluble receptor of transferrin, Lab. Med., 5, 9–12.Google Scholar
  18. 18.
    Lawen, A., and Lane, D. J. R. (2013) Mammalian iron homeostasis in health and disease: uptake, storage, transport and molecular mechanisms of action, Antioxid. Redox Signal., 18, 2473–2507.PubMedGoogle Scholar
  19. 19.
    Kazyukova, T. V., Levina, A. A., Tsvetaeva, N. V., Mamukova, Yu. I., and Tsybulskaya, M. M. (2006) Regulation of iron metabolism, Pediatriya, 6, 94–99.Google Scholar
  20. 20.
    Ablaev, H. P. (2012) Hepsidin: where is it from and what for is it needed? Lab. Med., 1, 45–49.Google Scholar
  21. 21.
    Crichton, R., Danielson, B., and Geisser P. (2008) Iron Therapy with Special Emphasis on Intravenous Administration, 4th Edn., International Medical Publishers, London-Boston.Google Scholar
  22. 22.
    Conrad, M., and Umbreit, J. (2002) Pathways of iron absorption, Blood Cells Mol. Dis., 29, 336–355.PubMedCrossRefGoogle Scholar
  23. 23.
    Theil, E. C., and Goss, D. J. (2009) Living with iron (and oxygen): questions and answers about iron homeostasis, Chem. Rev., 109, 4568–4579.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Theil, E. C. (2003) Ferritin: at the crossroads of iron and oxygen metabolism, J. Nutr., 133, 1549.-1553S.Google Scholar
  25. 25.
    Zhang, A., and Caroline, A. (2009) Iron homeostasis: recently identified proteins provide insight into novel control mechanisms, J. Biol. Chem., 284, 711–715.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Vatutin, N. T., Kalinkina, N. V., Smirnova, A. S., Kashanskaya, O. K., and Milner, I. A. (2012) Iron role in human body, Vestnik Kharkov. Nats. Univer., 24, 74–80.Google Scholar
  27. 27.
    Huch, R., and Schaefer, R. (2006) Iron Deficiency and Iron Deficiency Anaemia, Thieme Medical Publishers, New York.Google Scholar
  28. 28.
    Conrad, M. E., Cortell, S., Williams, H. C., and Foy, A. L. (1966) Polymerization and intraluminal factors in the absorption of hemoglobin–iron, J. Lab. Clin. Med., 68, 659–668.PubMedGoogle Scholar
  29. 29.
    Conrad, M. E., Benjamin, B. I., William, H. L., and Foy, A. L. (1967) Human absorption of hemoglobin, Gastroenterology, 53, 5–10.PubMedGoogle Scholar
  30. 30.
    Munoz, M., Garcia-Erce, J. A., and Remacha, A. F. (2011) Disorders of iron metabolism. Part 1: Molecular basis of iron homeostasis, J. Clin. Pathol., 64, 281–286.PubMedCrossRefGoogle Scholar
  31. 31.
    Shayeghi, M., Latunde-Dada, G. O., Oakhill, J. S., Laftah, A. H., Takeuchi, K., Halliday, N., Khan, Y., Warley, A., McCann, F. E., Hider, R. C., Frazer, D. M., Anderson, G. J., Vulpe, C. D., Simpson, R. J., and McKie, A. T. (2005) Identification of an intestinal heme transporter, Cell, 122, 789–801.PubMedCrossRefGoogle Scholar
  32. 32.
    Wyllie, J. C., and Kaufman, N. (1982) An electron microscopic study of heme uptake by rat duodenum, Lab. Invest., 47, 471–476.PubMedGoogle Scholar
  33. 33.
    Parmley, R. T., Barton, J. C., and Conrad, M. E. (1984) Ultrastructural cytochemistry and radioautography of hemoglobin–iron absorption, Exp. Mol. Pathol., 34, 131–144.CrossRefGoogle Scholar
  34. 34.
    Ryter, S. W., Alam, J., and Choi, A. M. K. (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic application, Physiol. Rev., 86, 583–650.PubMedCrossRefGoogle Scholar
  35. 35.
    Hou, S., Reynolds, M. F., Horrigan, F. T., Heinemann, S. H., and Hoshi, T. (2006) Reversible binding of heme to proteins in cellular signal transduction, Acc. Chem. Res., 39, 918–924.PubMedCrossRefGoogle Scholar
  36. 36.
    Dang, T. N., Bishop, G. M., Dringen, R., and Robinson, S. R. (2010) The putative heme transporter HCP1 is expressed in cultured astrocytes and contributes to the uptake of hemin, Glia, 58, 55–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Takahashi, N., Takahashi, Y., and Putnam, F. W. (1985) Complete amino acid sequence of human hemopexin, the heme-binding protein of serum, Proc. Natl. Acad. Sci. USA, 82, 73–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Tolosano, E., and Altruda, F. (2002) Hemopexin: structure, function, and regulation, DNA Cell Biol., 21, 297–306.Google Scholar
  39. 39.
    Hrkal, Z., Vodrazka, Z., and Kalousek, I. (1974) Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin, Eur. J. Biochem., 43, 73–78.PubMedCrossRefGoogle Scholar
  40. 40.
    Smith, A., and Hunt, R. C. (1990) Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems, Eur. J. Cell Biol., 53, 234–245.PubMedGoogle Scholar
  41. 41.
    Gutteridge, J. M., and Smith, A. (1988) Antioxidant protection by hemopexin of heme-stimulated lipid peroxidation, Biochem. J., 256, 861–865.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Vinchi, F., Gastaldi, S., Silengo, L., Altruda, F., and Tolosano, E. (2008) Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload, Am. J. Pathol., 173, 289–299.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kristiansen, M., Graversen, J. H., Jacobsen, C., Sonne, O., Hoffman, H. J., Law, S. K., and Moestrup, S. K. (2001) Identification of the hemoglobin scavenger receptor, Nature, 409, 198–201.PubMedCrossRefGoogle Scholar
  44. 44.
    Tarasova, N. E., and Teplyakova, E. D. (2012) Ferrokinetics and mechanisms of their regulation in human body, J. Fundament. Med. Biol., 1, 10–16.Google Scholar
  45. 45.
    Umbreit, J. N., Conrad, M. E., Moore, E. G., and Latour, L. F. (1998) Iron absorption and cellular transport: the mobilferrin/paraferritin paradigm, Semin. Hematol., 35, 13–26.PubMedGoogle Scholar
  46. 46.
    Bourdon, E., Kang, D. K., Ghosh, M. C., Drake, S. K., Wey, J., Levine, R. L., and Rouault, T. A. (2003) The role of endogenous heme synthesis and degradation domain cysteines in cellular iron-dependent degradation of IRP, Blood Cells Mol. Dis., 31, 247–255.PubMedCrossRefGoogle Scholar
  47. 47.
    Han, O. (2011) Molecular mechanism of intestinal iron absorption, Metallomics, 3, 103–109.PubMedCrossRefGoogle Scholar
  48. 48.
    Reidel, H. D., Remus, A. J., Fitscher, B. A., and Stremmel, W. (1995) Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes, Biochem. J., 309, 745–748.CrossRefGoogle Scholar
  49. 49.
    Latunde-Dada, G. O., Xiang, L., Simpson, R. J., and McKie, A. T. (2011) Duodenal cytochrome b (Cybrd 1) and HIF-2 expression during acute hypoxic exposure in mice, Eur. J. Nutr., 50, 699–704.PubMedCrossRefGoogle Scholar
  50. 50.
    Isobe, T., Baba, E., Arita, S., Komoda, M., Tamura, S., Shirakawa, T., Ariyama, H., Takaishi, S., Kusaba, H., Ueki, T., and Akashi, K. (2011) Human STEAP3 maintains tumor growth under hypoferric condition, Exp. Cell Res., 317, 2582–2591.PubMedCrossRefGoogle Scholar
  51. 51.
    Wallander, M. L., Leibold, E. A., and Eisenstein, R. S. (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins, Biochim. Biophys. Acta, 1763, 668689.CrossRefGoogle Scholar
  52. 52.
    Atanasova, B., Li, A. C., Bjarnason, I., Tzatchev, K. N., and Simpson, R. J. (2005) Duodenal ascorbate and ferric reductase in human iron deficiency, Am. J. Clin. Nutr., 81, 130–133.PubMedGoogle Scholar
  53. 53.
    Iolascon, A., and De Falco, L. (2009) Mutations in the gene encoding DMT1: clinical presentation and treatment, Semin. Hematol., 46, 358–370.PubMedCrossRefGoogle Scholar
  54. 54.
    Kato, J., Kobune, M., Ohkubo, S., Fujikawa, K., Tanaka, M., Takimoto, R., Takada, K., Takahari, D., Kawano, Y., Kohgo, Y., and Niitsu, Y. (2007) Iron/IRP1-dependent regulation of mRNA expression for transferrin receptor, DMT1 and ferritin during human erythroid differentiation, Exp. Hematol., 35, 879–887.PubMedCrossRefGoogle Scholar
  55. 55.
    Abouhamed, M., Gburek, J., Liu, W., Torchalski, B., Wilhelm, A., Wolff, N. A., Christensen, E. I., Thevenod, F., and Smith, C. P. (2006) Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein–metal complexes, Am. J. Physiol. Renal Physiol., 290, F1525–F1533.PubMedCrossRefGoogle Scholar
  56. 56.
    Munoz, M., Villar, I., and Garcia-Erce, J. A. (2009) An update on iron physiology, World J. Gastroenterol., 15, 4617–4626.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Umbreit, J., Conrad, M., and Hainsworth, L. (2002) The ferrireductase paraferritin contains divalent metal transporter as well as mobilferrin, Am. J. Physiol. Gastrointest. Liver Physiol., 282, 534–539.CrossRefGoogle Scholar
  58. 58.
    Andrews, N. C. (2002) Metal transporters and disease, Curr. Opin. Chem. Biol., 6, 181–186.PubMedCrossRefGoogle Scholar
  59. 59.
    Atanassova, B. D., and Tzatchev, K. N. (2008) Ascorbic acid important for iron metabolism, Folia Med. (Plovdiv), 50, 11–16.Google Scholar
  60. 60.
    Lane, D. J. R., and Lawen, A. (2008) Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells, J. Biol. Chem., 283, 12701–12708.PubMedCrossRefGoogle Scholar
  61. 61.
    May, J. M., Qu, Z. C., and Mendiratta, S. (1999) Role of ascorbic acid in transferrin-independent reduction and uptake of iron by U-937 cells, Biochem. Pharmacol., 57, 1275–1282.PubMedCrossRefGoogle Scholar
  62. 62.
    Gunshin, H., Starr, C. N., Direnzo, C., Fleming, M. D., Jin, J., Greer, E. L., Sellers, V. M., Galica, S. M., and Andrews, N. C. (2005) Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice, Blood, 106, 2879–2883.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Simovich, M., Hainsworth, L. N., Fields, P. A., Umbreit, J. N., and Conrad, M. E. (2003) Localization of the iron transport proteins mobilferrin and DMT1 in the duodenum: the surprising role of mucin, Am. J. Hematol., 74, 32–45.PubMedCrossRefGoogle Scholar
  64. 64.
    Conrad, M. E., Umbreit, J. N., and Moore, E. G. (1998) Regulation of iron absorption: proteins involved in duodenal mucosal uptake and transport, J. Am. Coll. Nutr., 12, 720–728.CrossRefGoogle Scholar
  65. 65.
    Umbreit, J. N., Conrad, M. E., Moore, E. G., Desai, M. P., and Turrens, J. (1996) Paraferritin: a protein complex with ferrireductase activity is associated with iron absorption in rats, Biochemistry, 35, 6460–6469.PubMedCrossRefGoogle Scholar
  66. 66.
    Umbreit, J. N., Conrad, M. E., and Simovich, M. (2000) Identification and localization of iron transport proteins in normal and iron deficient cells, Blood, 96, 217–221.Google Scholar
  67. 67.
    Conrad, M. E., Umbreit, J. N., Peterson, R. D. A., Moore, E. G., and Harper, K. P. (1993) Function of integrin in duodenal mucosal uptake of iron, Blood, 81, 517–521.PubMedGoogle Scholar
  68. 68.
    Conrad, M. E., Umbreit, J. N., Moore, E. G., Peterson, R. D. A., and Jones, M. B. (1990) A newly identified iron binding protein in duodenal mucosa of rats. Purification and characterization of mobilferrin, J. Biol. Chem., 265, 5273–5279.PubMedGoogle Scholar
  69. 69.
    Greenberg, G. R., and Wintrobe, M. M. (1946) A labile iron pool, J. Biol. Chem., 165, 397–398.PubMedGoogle Scholar
  70. 70.
    Jacobs, A. (1977) Low-molecular-weight intracellular iron transport compounds, Blood, 50, 433–439.PubMedGoogle Scholar
  71. 71.
    Andrews, N. C., and Schmidt, P. J. (2007) Iron homeostasis, Annu. Rev. Physiol., 69, 69–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Hider, R. C., and Kong, X. L. (2011) Glutathione: a key component of the cytoplasmatic labile iron pool, Biometals, 24, 1179–1187.PubMedCrossRefGoogle Scholar
  73. 73.
    Philpott, C. C. (2012) Coming into view: eukaryotic iron chaperones and intracellular iron delivery, J. Biol. Chem., 287, 13518–13523.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Andrews, N. C. (2004) Probing the iron pool. Focus on “Detection of intracellular iron by its regulatory effect”, Am. J. Physiol. Cell. Physiol., 287, C1537–C1538.PubMedCrossRefGoogle Scholar
  75. 75.
    Schneider, B. D., and Leibold, E. A. (2000) Regulation of mammalian iron homeostasis, Curr. Opin. Clin. Nutr. Metab. Care, 3, 267–273.PubMedCrossRefGoogle Scholar
  76. 76.
    McKie, A. T., Marciani, P., Rolfs, A., Brennan, K., and Wehr, K. (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation, Mol. Cell, 5, 299–309.PubMedGoogle Scholar
  77. 77.
    Schimanski, L. M., Drakesmith, H., MerryweatherClarke, A. T., Viprakasit, V., Edwards, J. P., Sweetland, E., Bastin, J. M., Cowley, D., Chinthammitr, Y., Robson, K. J., and Townsend, A. R. (2005) In vitro functional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN mutations, Blood, 105, 4096–4102.PubMedCrossRefGoogle Scholar
  78. 78.
    Abboud, S., and Haile, D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism, J. Biol. Chem., 275, 19906–19912.PubMedCrossRefGoogle Scholar
  79. 79.
    McKie, A. T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T. J., Farzaneh, F., Hediger, M. A., Hentze, M. W., and Simpson, R. J. (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation, Mol. Cell, 5, 299–309.PubMedGoogle Scholar
  80. 80.
    Tsvetaeva, N. V., Levina, A. A., and Mamukova, Yu. I. (2010) Bases of iron metabolism regulation, Klin. Onkogematol., 3, 278–283.Google Scholar
  81. 81.
    Stremmel, W., Karner, M., Manzhalii, E., Gilles, W., Herrmann, T., and Merle, U. (2007) Liver and iron metabolism–a comprehensive hypothesis for the pathogenesis of genetic hemochromatosis, J. Gastroenterol., 45, 71–75.Google Scholar
  82. 82.
    Zhang, L. I., Senecal, T., Ghosh, M. C., Ollivierre-Wilson, H., Tu, T., and Roault, T. A. (2011) Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts, Blood, 118, 2868–2877.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cadet, E., Gadenne, M., Capront, D., and Rochette, J. (2005) Donnes recentes sur metabolisme du fer: un etat de transition, Rev. Med. Interne, 26, 315–324.PubMedCrossRefGoogle Scholar
  84. 84.
    Darshan, D., Frazer, D. M., and Anderson, G. J. (2010) Molecular basis of iron-loading disorders, Expert Rev. Mol. Med., 8, e36.CrossRefGoogle Scholar
  85. 85.
    Vulpe, C. D., Kuo, Y. M., Murphy, T. L., Cowley, L., Askwith, C., Libina, N., Gitschier, J., and Anderson, G. J. (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse, Nat. Genet., 21, 195–199.PubMedCrossRefGoogle Scholar
  86. 86.
    Patel, B. N., and David, S. (1997) A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes, J. Biol. Chem., 272, 20185–20190.PubMedCrossRefGoogle Scholar
  87. 87.
    Klomp, L. W. J., and Gitlin, J. D. (1996) Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia, Hum. Mol. Genet., 5, 1989–1996.PubMedCrossRefGoogle Scholar
  88. 88.
    Yoshida, K., Furihata, K., Takeda, S., Nakamura, A., Yamamoto, K., Morita, H., Hiamuta, S., Ikeda, S., Shimizu, N., and Yanagisawa, N. (1995) A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans, Nat. Genet., 9, 267–272.PubMedCrossRefGoogle Scholar
  89. 89.
    Ponka, P., and Lok, C. N. (1999) The transferrin receptor: role in health and disease, Int. J. Biochem. Cell Biol., 31, 1111–1137.PubMedCrossRefGoogle Scholar
  90. 90.
    Gantz, T., and Nemeth, E. (2006) Regulation of iron acquisition and iron distribution in mammals, Biochim. Biophys. Acta, 1763, 690–699.CrossRefGoogle Scholar
  91. 91.
    Richardson, D. R., and Ponka, P. (1997) The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells, Biochim. Biophys. Acta, 1331, 1–40.PubMedCrossRefGoogle Scholar
  92. 92.
    Young, S. P., Bomford, A., and Williams, R. (1984) The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes, Biochem. J., 219, 505510.CrossRefGoogle Scholar
  93. 93.
    Umbreit, J. N., Conrad, M. E., Berry, M. A., Moore, E. G., Latour, L. F., Tolliver, B. A., and Elkhalifa, M. Y. (1997) The alternate iron transport pathway: mobilferrin and integrin in reticulocytes, Br. J. Haematol., 96, 521529.CrossRefGoogle Scholar
  94. 94.
    Anderson, G. J., and Frazer, D. M. (2005) Hepatic iron metabolism, Semin. Liver Dis., 25, 420–432.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen, T. T., Yuan, L. X., Pan, L. L., Ma, Z. G., Gu, L., Zhu, Y. P., and Gao, J. (2011) TfR2 mRNA expression in bone marrow mononuclear cells of children with hyperplastic anemia and its implications, Zhongguo Shi Yan Xue Ye Xue Za Zhi, 19, 439–443.PubMedGoogle Scholar
  96. 96.
    Krause, A. N. S., Magert, H. J., Schulz, A., Forssmann, W. G., Schulz-Knappe, P., and Adermann, K. (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity, FEBS Lett., 480, 147–150.PubMedCrossRefGoogle Scholar
  97. 97.
    Park, C. H., Valore, E. V., Waring, A. J., and Ganz, T. (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver, J. Biol. Chem., 276, 7806–7810.PubMedCrossRefGoogle Scholar
  98. 98.
    De Domenico, I., Ward, D. M., Langelier, C., Vaughn, M. B., Nemeth, E., Sundquist, W. I., Ganz, T., Musci, G., and Kaplan, J. (2007) The molecular mechanism of hepcidin-mediated ferroportin down-regulation, Mol. Biol. Cell, 18, 2569–2578.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Nemeth, E., Tuttle, M. S., Powelson, J., Vaughn, M. B., Donovan, A., and Ward, D. M. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization, Science, 306, 2090–2093.PubMedCrossRefGoogle Scholar
  100. 100.
    Raje, C. I., Kumar, S., Harle A., Nanda, J. S., and Raje, M. (2007) The macrophage cell surface glyceraldehyde-3phosphate dehydrogenase is a novel transferrin receptor, J. Biol. Chem., 282, 3252–3261.PubMedCrossRefGoogle Scholar
  101. 101.
    Takami, T., and Sakaida, I. (2011) Iron regulation by hepatocytes and free radicals, J. Clin. Biochem. Nutr., 48, 103–106.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dautry-Varsat, A., Ciechanover, A., and Lodish, H. F. (1983) pH and the recycling of transferrin during receptormediated endocytosis, Proc. Natl. Acad. Sci. USA, 80, 2258–2262.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ohgami, R. S., Campagna, D. R., Greer, E. L., Antiochos, B., McDonald, A., Chen, J., Sharp, J. J., Fujiwara, Y., Barker, J. E., and Fleming, M. D. (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells, Nat. Genet., 37, 1264–1269.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., and Andrews, N. C. (1998) Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport, Proc. Natl. Acad. Sci. USA, 95, 1148–1153.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ludwiczek, S., Theurl, I., Muckenthaler, M. U., Jakab, M., Mair, S. M., Theurl, M., Kiss, J., Paulmichl, M., Hentze, M. W., Ritter, M., and Weiss, G. (2007) Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1, Nat. Med., 13, 448454.CrossRefGoogle Scholar
  106. 106.
    Ohgami, R. S., Campagna, D. R., McDonald, A., and Fleming, M. D. (2006) The STEAP proteins are metalloreductases, Blood, 108, 1388–1394.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Ikuta, K., Zak, O., and Aisen, P. (2004) Recycling, degradation and sensitivity to the synergistic anion of transferrin in the receptor-independent route of iron uptake by human hepatoma (HuH-7) cells, Int. J. Biochem. Cell Biol., 36, 340–352.PubMedCrossRefGoogle Scholar
  108. 108.
    Shindo, M., Torimoto, Y., Saito, H., Motomura, W., Ikuta, K., Sato, K., Fujimoto, Y., and Kohgo, Y. (2006) Functional role of DMT1 in transferrin-independent iron uptake by human hepatocyte and hepatocellular carcinoma cell, HLF, Hepatol. Res., 35, 152–162.PubMedGoogle Scholar
  109. 109.
    Sturrock, A., Alexander, J., Lamb, J., Craven, C. M., and Kaplan, J. (1990) Characterization of a transferrin-independent uptake system for iron in HeLa cells, J. Biol. Chem., 265, 3139–3145.PubMedGoogle Scholar
  110. 110.
    Liuzzi, J. P., Aydemir, F., Nam, H., Knutson, M. D., and Cousins, R. J. (2006) Zip14 (Slc39a14) mediates nontransferrin-bound iron uptake into cells, Proc. Natl. Acad. Sci. USA, 103, 13612–13617.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Oudit, G. Y., Sun, H., Trivieri, M. G., Koch, S. E., Dawood, F., Ackerley, C., Yazdanpanah, M., Wilson, G. J., Schwartz, A., Liu, P. P., and Backx, P. H. (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy, Nat. Med., 9, 1187–1194.PubMedCrossRefGoogle Scholar
  112. 112.
    Breuer, W., Shvartsman, M., and Cabantchik, Z. I. (2008) Intracellular labile iron, Int. J. Biochem. Cell Biol., 40, 350–354.PubMedCrossRefGoogle Scholar
  113. 113.
    Koury, M. J., and Ponka, P. (2004) New insights into erythropoiesis: the roles of folate, vitamin B12, and iron, Annu. Rev. Nutr., 24, 105–131.CrossRefGoogle Scholar
  114. 114.
    Cairo, G., Recalcati, S., Mantovani, A., and Locati, M. (2011) Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype, Trends Immunol., 32, 241–247.PubMedCrossRefGoogle Scholar
  115. 115.
    Kurz, T., Eaton, J. W., and Brunk, U. T. (2011) The role of lysosomes in iron metabolism and recycling, Int. J. Biochem. Cell Biol., 43, 1686–1697.PubMedCrossRefGoogle Scholar
  116. 116.
    Soe-Lin, S., Apte, S. S., Andriopoulos, B., Andrews, M. C., Schranzhofer, M., Kahawita, T., Garcia-Santos, D., and Ponka, P. (2009) Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo, Proc. Natl. Acad. Sci. USA, 106, 5960–5965.CrossRefGoogle Scholar
  117. 117.
    Knutson, M. D., Vafa, M. R., Haile, D. J., and WesslingResnick, M. (2003) Iron loading and erythrophagocytosis increase ferroportin1 (FPN1) expression in J774 macrophages, Blood, 102, 4191–4197.PubMedCrossRefGoogle Scholar
  118. 118.
    Leimberg, M. J., Prus, E., Konijn, A. M., and Fibach, E. (2008) Macrophages function as a ferritin iron source for cultured human erythroid precursors, J. Cell. Biochem., 103, 1211–1218.PubMedCrossRefGoogle Scholar
  119. 119.
    Ponka, P. (1999) Cellular iron metabolism, Kidney Int., 55, S2–S11.CrossRefGoogle Scholar
  120. 120.
    Eisenstein, R. S. (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism, Annu. Rev. Nutr., 20, 627–662.PubMedCrossRefGoogle Scholar
  121. 121.
    Layer, G., Jahn, D., and Jahn, M. (2011) Heme biosynthesis, in Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine (Kadish, K. M., Smith, K. M., Guilard, R., and Hacksack, N. J., eds.) World Scientific Publishing Co. Pte. Ltd., London-Singapore, pp. 159–215.Google Scholar
  122. 122.
    Horowitz, M. P., and Greenamyre, J. T. (2010) Mitochondrial iron metabolism and its role in neurodegeneration, J. Alzheimer’s Dis., 20, S551–S568.Google Scholar
  123. 123.
    Huang, M. L.-H., Lane, D. J. R., and Richardson, D. R. (2011) Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease, Antioxid. Redox Signal., 15, 3003–3019.PubMedCrossRefGoogle Scholar
  124. 124.
    Sheftel, A. D., Zhang, A. S., Brown, C., Shirihai, O. S., and Ponka, P. (2007) Direct interorganellar transfer of iron from endosome to mitochondrion, Blood, 110, 125–132.PubMedCrossRefGoogle Scholar
  125. 125.
    Troadec, M. B., Warner, D., Wallace, J., Thomas, K., Spangrude, G. J., Phillips, J. D., Khalimonchuk, O., Paw, B. H., Ward, D. M., and Kaplan, J. (2011) Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria, Blood, 117, 5494–5502.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Shaw, G. C., Cope, J. J., Li, L., Corson, K., Hersey, C., Ackermann, G. E., Gwynn, B., Lambert, A. J., Wingert, R. A., Traver, D., Trede, N. S., Barut, B. A., Zhou, Y., Minet, E., Donovan, A., Brownlie, A., Balzan, R., Weiss, M. J., Peters, L. L., Kaplan, J., Zon, L. I., and Paw, B. H. (2006) Mitoferrin is essential for erythroid iron assimilation, Nature, 440, 96–100.PubMedCrossRefGoogle Scholar
  127. 127.
    Richardson, D. R., Lane, D. J. R., Becker, E. M., Huang, M. L.-H., Whitnall, M., Rahmanto, Y. S., Sheftel, A. D., and Ponka, P. (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol, Proc. Natl. Acad. Sci. USA, 107, 10775–10782.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sheftel, A. D., and Lill, R. (2009) The power plant of the cell is also a smithy: the emerging role of mitochondria in cellular iron homeostasis, Ann. Med., 41, 82–99.PubMedCrossRefGoogle Scholar
  129. 129.
    Li, F. Y., Nikali, K., Gregan, J., Leibiger, I., Leibiger, B., Schweyen, R., Larsson, C., and Suomalainen, A. (2001) Characterization of a novel human putative mitochondrial transporter homologous to the yeast mitochondrial RNA splicing proteins 3 and 4, FEBS Lett., 2, 79–84.CrossRefGoogle Scholar
  130. 130.
    Campuzano, V., Montermini, L., Molto, M. D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., and Monticelli, A. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion, Science, 271, 1423–1427.Google Scholar
  131. 131.
    Babcock, M., De Silva, D., Oaks, R., Davis-Kaplan, S., Jiralerspong, S., Montermini, L., Pandolfo, M., and Kaplan, J. (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin, Science, 276, 1709–1712.PubMedGoogle Scholar
  132. 132.
    Cavadini, P., Gellera, C., Patel, P. I., and Isaya, G. (2000) Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae, Hum. Mol. Genet., 9, 25232530.CrossRefGoogle Scholar
  133. 133.
    Musco, G., Stier, G., Kolmerer, B., Adinolfi, S., Martin, S., Frenkiel, T., Gibson, T., and Pastore, A. (2000) Towards a structural understanding of Friedreich’s ataxia: the solution structure of frataxin, Structure, 8, 695–707.PubMedCrossRefGoogle Scholar
  134. 134.
    Allikmets, R., Raskind, W. H., Hutchinson, A., Schueck, N. D., Dean, M., and Koeller, D. M. (1999) Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A), Hum. Mol. Genet., 8, 743–749.PubMedCrossRefGoogle Scholar
  135. 135.
    Leighton, J., and Schatz, G. (1997) An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast, EMBO J., 418, 346–350.Google Scholar
  136. 136.
    Kispal, G., Csere, P., Guiard, B., and Lill, R. (1997) The ABC transporter Atm1p is required for mitochondrial iron homeostasis, FEBS Lett., 418, 346–350.PubMedCrossRefGoogle Scholar
  137. 137.
    Corsi, B., Cozzi, A., Arosio, P., Drysdale, J., Santambrogio, P., Campanella, A., Biasiotto, G., Albertini, A., and Levi, S. (2002) Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism, J. Biol. Chem., 277, 22430–22437.PubMedCrossRefGoogle Scholar
  138. 138.
    Levi, S., Corsi, B., Bosisio, M., Invernizzi, R., Volz, A., Sanford, D., Arosio, P., and Drysdale, J. (2001) A human mitochondrial ferritin encoded by an intronless gene, J. Biol. Chem., 276, 24437–24440.PubMedCrossRefGoogle Scholar
  139. 139.
    Quigley, J. G., Yang, Z., Worthington, M. T., Phillips, J. D., Sabo, K. M., Sabath, D. E., Berg, C. L., Sassa, S., Wood, B. L., and Abkowitz, J. L. (2004) Identification of a human heme exporter that is essential for erythropoiesis, Cell, 118, 757–766.PubMedCrossRefGoogle Scholar
  140. 140.
    Cavadini, P., Biasiotto, G., Poli, M., Levi, S., Verardi, R., Zanella, I., Derosas, M., Ingrassia, R., Corrado, M., and Arosio, P. (2007) RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload, Blood, 109, 3552–3559.PubMedCrossRefGoogle Scholar
  141. 141.
    Paterson, J. K., Shukla, S., Black, C. M., Tachiwada, T., Garfield, S., Wincovitch, S., Ernst, D. N., Agadir, A., Li, X., Ambudkar, S. V., Szakacs, G., Akiyama, S., and Gottesman, M. M. (2007) Human ABCB6 localizes to both the outer mitochondrial membrane and the plasma membrane, Biochemistry, 46, 9443–9452.PubMedCrossRefGoogle Scholar
  142. 142.
    Krishnamurthy, P. C., Du, G., Fukuda, Y., Sun, D., Sampath, J., Mercer, K. E., Wang, J., Sosa-Pineda, B., Murti, K. G., and Schuetz, J. D. (2006) Identification of a mammalian mitochondrial porphyrin transporter, Nature, 443, 586–589.PubMedCrossRefGoogle Scholar
  143. 143.
    Dringen, R., Bishop, G. M., Koeppe, M., Dang, T. N., and Robinson, S. R. (2000) The pivotal role of astrocytes in the metabolism of iron in the brain, Neurochem. Res., 32, 1884–1890.CrossRefGoogle Scholar
  144. 144.
    Malecki, E. A., Devenyi, A. G., Beard, J. L., and Connor, J. R. (1999) Existing and emerging mechanisms for transport of iron and manganese to the brain, J. Neurosci. Res., 56, 113–122.PubMedGoogle Scholar
  145. 145.
    Dringen, R., Bishop, G. M., Koeppe, M., Dang, T. N., and Robinson, S. R. (2007) The pivotal role of astrocytes in the metabolism of iron in the brain, Neurochem. Res., 32, 1884–1890.PubMedCrossRefGoogle Scholar
  146. 146.
    Lane, D. J. R., Robinson, S. R., Czerwinska, H., Bishop, G. M., and Lawen, A. (2010) Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron, Biochem. J., 432, 123132.CrossRefGoogle Scholar
  147. 147.
    Tulpule, K., Robinson, S. R., Bishop, G. M., and Dringen, R. (2010) Uptake of ferrous iron by cultured rat astrocytes, J. Neurosci. Res., 88, 563–571.PubMedGoogle Scholar
  148. 148.
    Rouault, T. A., and Cooperman, S. (2006) Brain iron metabolism, Semin. Pediatr. Neurol., 13, 142–148.PubMedCrossRefGoogle Scholar
  149. 149.
    Milto, I. V., Grishanova, A. Yu., Klimenteva, T. K., Suhodolo, I. V., Vasukov, G. Yu., and Ivanova, V. V. (2014) Iron metabolism after application of modified magnetite nanoparticles in rats, Biochemistry (Moscow), 79, 1245–1254.CrossRefGoogle Scholar
  150. 150.
    Han, J., Seaman, W. E., Di, X., Wang, W., Willingham, M., Torti, F. M., and Torti, S. V. (2011) Iron uptake mediated by binding of H-ferritin to the TIM-2 receptor in mouse cells, PLoS One, 6, e23800.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Fisher, J., Devraj, K., Ingram, J., Slagle-Webb, B., Madhankumar, A. B., Liu, X., Klinger, M., Simpson, I. A., and Connor, J. R. (2007) Ferritin: a novel mechanism for delivery of iron to the brain and other organs, Am. J. Physiol. Cell Physiol., 293, C641–C649.PubMedCrossRefGoogle Scholar
  152. 152.
    Finch, C. (1994) Regulators of iron balance in humans, Blood, 84, 1697–1702.PubMedGoogle Scholar
  153. 153.
    Menshikov, V. V. (2002) Clinical Laboratory Analyses. Principles of Clinical Laboratory Analysis [in Russian], Agat-Med, Moscow.Google Scholar
  154. 154.
    Pantorullo, S. (2005) Iron, oxidative stress and human health, Mol. Aspects Med., 26, 299–312.CrossRefGoogle Scholar
  155. 155.
    Arosio, P., Ingrassia, R., and Cavadini, P. (2008) Ferritins: a family of molecules for iron storage, antioxidation and more, Biochim. Biophys. Acta, 1790, 589–599.PubMedCrossRefGoogle Scholar
  156. 156.
    Harrison, P. M., and Arosio, P. (1996) The ferritins: molecular properties, iron storage function and cellular regulation, Biochim. Biophys. Acta, 1275, 161–203.PubMedGoogle Scholar
  157. 157.
    Chasteen, N. D., and Harrison, P. M. (1999) Mineralization in ferritin: an efficient means of iron storage, J. Struct. Biol., 126, 182–194.PubMedCrossRefGoogle Scholar
  158. 158.
    Andrews, S. C., Arosio, P., Bottke, W., Briat, J.-F., Von Darl, M., Harrison, P. M., Laulhkre, J.-P., Levi, S., Lobremx, S., and Yewdall, S. J. (1992) Structure, function and evolution of ferritins, J. Inorg. Biochem., 47, 161–174.PubMedCrossRefGoogle Scholar
  159. 159.
    Milto, I. V., Klimenteva, T. K., Suhodolo, and Krivova, N. A. (2012) Prooxidant and antioxidant activity of blood plasma and histology of internal organs of rats after intravenous administration of magnetite nanoparticles, Biochemistry (Moscow), Suppl. Ser. B Biomed. Chem., 6, 225–230.CrossRefGoogle Scholar
  160. 160.
    Cai, C. X., and Linsenmayer, T. F. (2001) Nuclear translocation of ferritin in corneal epithelial cells, J. Cell Sci., 114, 2327–2334.PubMedGoogle Scholar
  161. 161.
    Cai, C. X., Birk, D. E., and Linsenmayer, T. F. (1998) Nuclear ferritin protects DNA from UV damage in corneal epithelial cells, Mol. Biol. Cell, 9, 1037–1051.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Surguladze, N., Thompson, K. M., Beard, J. L., Connor, J. R., and Fried, M. G. (2004) Interaction and reactions of ferritin with DNA, J. Biol. Chem., 279, 14694–14702.PubMedCrossRefGoogle Scholar
  163. 163.
    Alkhateeb, A., and Connor, J. R. (2010) Nuclear ferritin: a new role for ferritin in cell biology, Biochim. Biophys. Acta, 1800, 793–797.PubMedCrossRefGoogle Scholar
  164. 164.
    Bou-Abdallah, F., Santambrogio, P., Levi, S., Arosio, P., and Chasteen, N. D. (2005) Unique iron binding and oxidation properties of human ferritin: A comparative analysis with human H-chain ferritin, J. Mol. Biol., 347, 543554.CrossRefGoogle Scholar
  165. 165.
    Double, K. L., Maywald, M., Schmittel, M., Riederer, P., and Gerlach, M. (1998) In vitro studies of ferritin iron release and neurotoxicity, J. Neurochem., 70, 2492–2499.PubMedCrossRefGoogle Scholar
  166. 166.
    Fischbach, F. A., Gregory, D. W., Harrison, P. M., Hoy, T. G., and Williams, J. M. (1971) On the structure of hemosiderin and its relationship to ferritin, J. Ultrastruct. Res., 37, 495–503.PubMedCrossRefGoogle Scholar
  167. 167.
    Konijn, A. M., Glickstein, H., Vaisman, B., MeyronHoltz, E. G., Slotki, I. N., and Cabantchik, Z. I. (1999) The cellular labile iron pool and intracellular ferritin in K562 cells, Blood, 94, 2128–2134.PubMedGoogle Scholar
  168. 168.
    Ozaki, M., Awai, T., and Kawabata, M. (1988) Iron release from haemosiderin and production of iron-catalyzed hydroxyl radicals in vitro, Biochem. J., 250, 589–595.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Koorts, A. M., and Viljoen, M. (2007) Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion, Arch. Physiol. Biochem., 113, 30–54.CrossRefGoogle Scholar
  170. 170.
    O’Connell, M., Halliwell, B., Moorhouse, C. P., Aruoma, O. I., Baum, H., and Peters, T. J. (1986) Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism? Biochem. J., 234, 727–731.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Beard, J. L., Dawson, H., and Pinero, D. J. (1996) Iron metabolism: a comprehensive review, Nutr. Rev., 54, 295317.Google Scholar
  172. 172.
    Oxengendler, G. I. (1982) Poisons and Counterpoisons [in Russian], Nauka, Leningrad.Google Scholar
  173. 173.
    Morgan, E. H. (1981) Transferrin, biochemistry, physiology and clinical significance, Mol. Aspects Med., 4, 1–123.CrossRefGoogle Scholar
  174. 174.
    Anderson, B. F., Baker, H. M., Norris, G. E., Rice, D. W., and Baker, E. N. (1989) Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 Å resolution, J. Mol. Biol., 209, 711–734.PubMedCrossRefGoogle Scholar
  175. 175.
    Gkouvatsos, K., Papanikolaou, G., and Pantopoulos, K. (2012) Regulation of iron transport and the role of transferrin, Biochim. Biophys. Acta, 1820, 188–202.PubMedCrossRefGoogle Scholar
  176. 176.
    De Domenico, I., McVey Ward, D., and Kaplan, J. (2008) Regulation of iron acquisition and storage: consequences for iron-linked disorders, Nat. Rev. Mol. Cell Biol., 9, 7281.CrossRefGoogle Scholar
  177. 177.
    Kamyshnikov, V. S. (2000) Handbook of Clinical Biochemical Laboratory Diagnosis [in Russian], Belarus, Minsk.Google Scholar
  178. 178.
    Breuer, W., Hershko, C., and Cabantchik, Z. I. (2000) The importance of non-transferrin bound iron in disorders of iron metabolism, Transfus. Sci., 23, 185–192.PubMedCrossRefGoogle Scholar
  179. 179.
    Hershko, C., Graham, G., Bates, G. W., and Rachmilewitz, E. (1978) Non-specific serum iron in thalassemia: an abnormal serum iron fraction of potential toxicity, Br. J. Haematol., 40, 255–263.PubMedCrossRefGoogle Scholar
  180. 180.
    Dresow, B., Petersen, D., Fischer, R., and Nielson, P. (2008) Non-transferrin-bound iron in plasma following administration of oral iron drugs, Biometals, 21, 273276.CrossRefGoogle Scholar
  181. 181.
    Anderson, G. J. (1999) Non-transferrin-bound iron and cellular toxicity, J. Gastroenterol. Hepatol., 14, 105–108.PubMedCrossRefGoogle Scholar
  182. 182.
    Baker, E., Baker, S. M., and Morgan, E. H. (1998) Characterization of non-transferrin-bound iron (ferric citrate) uptake by rat hepatocytes in culture, Biochim. Biophys. Acta, 1380, 21–30.PubMedCrossRefGoogle Scholar
  183. 183.
    Latunde-Dada, G. O., Simpson, R. J., and McKie, A. T. (2008) Duodenal cytochrome b expression stimulates iron uptake by human intestinal epithelial cells, J. Nutr., 138, 991–995.PubMedGoogle Scholar
  184. 184.
    Morgan, E. H. (2001) Mechanisms of iron transport into rat erythroid cells, J. Cell. Physiol., 186, 193–200.PubMedCrossRefGoogle Scholar
  185. 185.
    Andrews, N. (1999) Disorders of iron metabolism, N. Engl. J. Med., 341, 1986–1995.PubMedCrossRefGoogle Scholar
  186. 186.
    Belous, A. M., and Konnik, A. T. (1991) Physiological Role of Iron [in Russian], Naukova Dumka, Kiev.Google Scholar
  187. 187.
    Kawakami, H., and Lonnerdal, B. (1991) Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes, Am. J. Physiol., 261, G841–G846.PubMedGoogle Scholar
  188. 188.
    Lonnerdal, B., and Bryant, A. (2006) Absorption of iron from recombinant human lactoferrin in young US women, Am. J. Clin. Nutr., 83, 305–309.PubMedGoogle Scholar
  189. 189.
    Bao, G., Clifton, M., Hoette, T. M., Mori, K., Deng, S. X., Qiu, A., Viltard, M., Williams, D., Paragas, N., Leete, T., Kulkarni, R., Li, X., Lee, B., Kalandadze, A., Ratner, A. J., Pizarro, J. C., Schmidt-Ott, K. M., Landry, D. W., Raymond, K. N., Strong, R. K., and Barasch, J. (2010) Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex, Nat. Chem. Biol., 6, 602609.CrossRefGoogle Scholar
  190. 190.
    Honore, P. M., Jacobs, R., Joannes-Boyau, O., De Regt, J., Boer, W., De Waele, E., Collin, V., and Spapen, H. D. (2011) Septic AKI in ICU patients: diagnosis, pathophysiology, and treatment type, dosing, and timing: a comprehensive review of recent and future developments, Ann. Intensive Care, 1, 1–9.Google Scholar
  191. 191.
    Yang, J., Goetz, D., Li, J. Y., Wang, W., Mori, K., Setlik, D., Du, T., Erdjument-Bromage, H., Tempst, P., Strong, R., and Barasch, J. (2002) An iron delivery pathway mediated by a lipocalin, Mol. Cell, 10, 1045–1056.PubMedCrossRefGoogle Scholar
  192. 192.
    Maev, I. V., and Samsonov, A. A. (2005) Diseases of Jejunum [in Russian], MEDpress-Inform, Moscow.Google Scholar
  193. 193.
    Crosby, W. H., Conrad, M. E., and Wheby, M. S. (1963) The rate of iron accumulation in iron storage disease, Blood, 22, 429–440.PubMedGoogle Scholar
  194. 194.
    Green, R., Charlton, R. W., Softel, H., Bothwell, T., Mayer, F., Adams, B., Finch, C., and Layrisse, M. (1968) Body iron excretion in man. A collaborative study, Am. J. Med., 45, 336–353.PubMedCrossRefGoogle Scholar
  195. 195.
    Conrad, M. E., Weintraub, L. R., and Crosby, W. H. (1964) The role of the intestine in iron kinetics, J. Clin. Invest., 43, 963–974.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Conrad, M. E., Parmley, R. T., and Osterloh, K. (1987) Small intestinal regulation of iron absorption in the rat, J. Lab. Clin. Med., 110, 418–426.PubMedGoogle Scholar
  197. 197.
    Umbreit, J. (2005) Iron deficiency: a concise review, Am. J. Hematol., 78, 225–231.PubMedCrossRefGoogle Scholar
  198. 198.
    Rumyantseva, A. G., and Tokareva, Yu. N. (2004) Iron Overload Diseases (Hemochromatoses) [in Russian], ID Medpraktika, Moscow.Google Scholar
  199. 199.
    Porto, G., and De Sousa, M. (2007) Iron overload and immunity, World J. Gastroenterol., 13, 4707–4715.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Beutler, E., Hoffbrand, A. V., and Cook, J. D. (2003) Iron deficiency and overload, Hematol. Am. Soc. Hematol. Educat. Program, 40, 40–61.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. V. Milto
    • 1
    • 2
    Email author
  • I. V. Suhodolo
    • 1
  • V. D. Prokopieva
    • 3
  • T. K. Klimenteva
    • 1
  1. 1.Siberian State Medical UniversityTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Mental Health Research InstituteTomskRussia

Personalised recommendations