Biochemistry (Moscow)

, Volume 81, Issue 5, pp 538–547 | Cite as

Determination of size of folding nuclei of fibrils formed from recombinant Aβ(1-40) peptide

  • E. I. Grigorashvili
  • O. M. Selivanova
  • N. V. Dovidchenko
  • U. F. Dzhus
  • A. O. Mikhailina
  • M. Yu. Suvorina
  • V. V. Marchenkov
  • A. K. Surin
  • O. V. GalzitskayaEmail author


We have developed a highly efficient method for purification of the recombinant product Aβ(1-40) peptide. The concentration dependence of amyloid formation by recombinant Aβ(1-40) peptide was studied using fluorescence spectroscopy and electron microscopy. We found that the process of amyloid formation is preceded by lag time, which indicates that the process is nucleation-dependent. Further exponential growth of amyloid fibrils is followed by branching scenarios. Based on the experimental data on the concentration dependence, the sizes of the folding nuclei of fibrils were calculated. It turned out that the size of the primary nucleus is one “monomer” and the size of the secondary nucleus is zero. This means that the nucleus for new aggregates can be a surface of the fibrils themselves. Using electron microscopy, we have demonstrated that fibrils of these peptides are formed by the association of rounded ring structures.


amyloid fibril protofibril oligomer seed Aβ peptide Alzheimer’s disease electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glenner, G. G., and Wong, C. W. (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun., 120, 885–890.CrossRefPubMedGoogle Scholar
  2. 2.
    Hardy, J., and Allsop, D. (1991) Amyloid deposition as the central event in the etiology of Alzheimer’s disease, Trends Pharmacol. Sci., 12, 383–388.CrossRefPubMedGoogle Scholar
  3. 3.
    Haaßs, C., Schlossmacher, M. G., Hung, A. Y., VigoPelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., and Teplow, D. B. (1992) Amyloid-ß peptide is produced by cultured cells during normal metabolism, Nature, 359, 322–325.CrossRefGoogle Scholar
  4. 4.
    Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., and Malinow, R. (2003) APP processing and synaptic function, Neuron, 37, 925–937.CrossRefPubMedGoogle Scholar
  5. 5.
    Finder, V. H., and Glockshuber, R. (2007) Amyloid-ß aggregation, Neurodegener. Dis., 4, 13–27.CrossRefPubMedGoogle Scholar
  6. 6.
    Chiti, F., and Dobson, C. M. (2009) Amyloid formation by globular proteins under native conditions, Nat. Chem. Biol., 5, 15–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen, S. I. A., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M., and Knowles, T. P. J. (2013) Proliferation of amyloid-ß42 aggregates occurs through a secondary nucleation mechanism, Proc. Natl. Acad. Sci. USA, 110, 9758–9763.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Meisl, G., Yang, X., Hellstrand, E., Frohm, B., Kirkegaard, J. B., Cohen, S. I. A., Dobson, C. M., Linse, S., and Knowles, T. P. J. (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aß40 and Aß42 peptides, Proc. Natl. Acad. Sci. USA, 111, 9384–9389.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hofrichter, J., Ross, P. D., and Eaton, W. A. (1974) Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease, Proc. Natl. Acad. Sci. USA, 71, 4864–4868.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Garai, K., and Frieden, C. (2013) Quantitative analysis of the time course of Aß oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Aß, Proc. Natl. Acad. Sci. USA, 110, 3321–3326.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dovidchenko, N. V., Finkelstein, A. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation, J. Phys. Chem. B, 118, 1189–1197.CrossRefPubMedGoogle Scholar
  12. 12.
    Selivanova, O. M., Suvorina, M. Y., Dovidchenko, N. V., Eliseeva, I. A., Surin, A. K., Finkelstein, A. V., Schmatchenko, V. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. II. Experimental application for insulin and LysPro insulin: aggregation morphology, kinetics, and sizes of nuclei, J. Phys. Chem. B, 118, 1198–1206.PubMedGoogle Scholar
  13. 13.
    Kim, E.-K., Moon, J. C., Lee, J. M., Jeong, M. S., Oh, C., Ahn, S.-M., Yoo, Y. J., and Jang, H. H. (2012) Large-scale production of soluble recombinant amyloid-ß peptide 1-42 using cold-inducible expression system, Protein Express. Purif., 86, 53–57.CrossRefGoogle Scholar
  14. 14.
    Lee, E. K., Hwang, J. H., Shin, D. Y., Kim, D. I., and Yoo, Y. J. (2005) Production of recombinant amyloid-ß peptide 42 as an ubiquitin extension, Protein Express. Purif., 40, 183–189.CrossRefGoogle Scholar
  15. 15.
    Grimsley, G. R., and Pace, C. N. (2004) Spectrophotometric determination of protein concentration, Curr. Protoc. Protein Sci., Chap. 3, Unit 3.1, doi: 10.1002/0471140864ps0301s33.Google Scholar
  16. 16.
    Suvorina, M. Y., Selivanova, O. M., Grigorashvili, E. I., Nikulin, A. D., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2015) Studies of polymorphism of amyloid-ß42 peptide from different suppliers, J. Alzheimer’s Dis., 47, 583–593.CrossRefGoogle Scholar
  17. 17.
    Lu, J.-X., Qiang, W., Yau, W.-M., Schwieters, C. D., Meredith, S. C., and Tycko, R. (2013) Molecular structure of ß-amyloid fibrils in Alzheimer’s disease brain tissue, Cell, 154, 1257–1268.CrossRefPubMedGoogle Scholar
  18. 18.
    Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural model for Alzheimer’s ß-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl. Acad. Sci. USA, 99, 16742–16747.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Petkova, A. T., Leapman, R. D., Guo, Z., Yau, W.-M., Mattson, M. P., and Tycko, R. (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s ß-amyloid fibrils, Science, 307, 262–265.CrossRefPubMedGoogle Scholar
  20. 20.
    Paravastu, A. K., Leapman, R. D., Yau, W.-M., and Tycko, R. (2008) Molecular structural basis for polymorphism in Alzheimer’s ß-amyloid fibrils, Proc. Natl. Acad. Sci. USA, 105, 18349–18354.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. (1997) Amyloid-ß protein fibrillogenesis. Detection of a protofibrillar intermediate, J. Biol. Chem., 272, 22364–22372.CrossRefPubMedGoogle Scholar
  22. 22.
    Schmidt, M., Sachse, C., Richter, W., Xu, C., Fandrich, M., and Grigorieff, N. (2009) Comparison of Alzheimer Aß(1-40) and Aß(1-42) amyloid fibrils reveals similar protofilament structures, Proc. Natl. Acad. Sci. USA, 106, 19813–19818.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jeong, J. S., Ansaloni, A., Mezzenga, R., Lashuel, H. A., and Dietler, G. (2013) Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation, J. Mol. Biol., 425, 1765–1781.CrossRefPubMedGoogle Scholar
  24. 24.
    Roychaudhuri, R., Yang, M., Deshpande, A., Cole, G. M., Frautschy, S., Lomakin, A., Benedek, G. B., and Teplow, D. B. (2013) C-terminal turn stability determines aßsembly differences between Aß40 and Aß42, J. Mol. Biol., 425, 292–308.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nielsen, E. H., Nybo, M., and Svehag, S. E. (1999) Electron microscopy of prefibrillar structures and amyloid fibrils, Methods Enzymol., 309, 491–496.CrossRefPubMedGoogle Scholar
  26. 26.
    Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Ghiso, J., and Lal, R. (2005) Amyloid ion channels: a common structural link for protein-misfolding disease, Proc. Natl. Acad. Sci. USA, 102, 10427–10432.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rajadas, J., Liu, C. W., Novick, P., Kelley, N. W., Inayathullah, M., Lemieux, M. C., and Pande, V. S. (2011) Rationally designed turn promoting mutation in the amyloid-ß peptide sequence stabilizes oligomers in solution, PLoS One, 6, e21776.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stroud, J. C., Liu, C., Teng, P. K., and Eisenberg, D. (2012) Toxic fibrillar oligomers of amyloid-ß have croßs-ß structure, Proc. Natl. Acad. Sci. USA, 109, 7717–7722.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Finder, V. H., Vodopivec, I., Nitsch, R. M., and Glockshuber, R. (2010) The recombinant amyloid-ß peptide Aß1-42 aggregates faster and is more neurotoxic than synthetic Aß1-42, J. Mol. Biol., 396, 9–18.CrossRefPubMedGoogle Scholar
  30. 30.
    Goldsbury, C., Frey, P., Olivieri, V., Aebi, U., and Muller, S. A. (2005) Multiple aßsembly pathways underlie amyloidß fibril polymorphisms, J. Mol. Biol., 352, 282–298.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang, R., Hu, X., Khant, H., Ludtke, S. J., Chiu, W., Schmid, M. F., Frieden, C., and Lee, J.-M. (2009) Interprotofilament interactions between Alzheimer’s Aß142 peptides in amyloid fibrils revealed by cryoEM, Proc. Natl. Acad. Sci. USA, 106, 4653–4658.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chi, E. Y., Frey, S. L., Winans, A., Lam, K. L. H., Kjaer, K., Majewski, J., and Lee, K. Y. C. (2010) Amyloid-ß fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly, Biophys. J., 98, 2299–2308.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Komatsu, H., Feingold-Link, E., Sharp, K. A., Rastogi, T., and Axelsen, P. H. (2010) Intrinsic linear heterogeneity of amyloid-ß protein fibrils revealed by higher resolution mass-per-length determinations, J. Biol. Chem., 285, 41843–41851.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sulatskaya, A. I., Maskevich, A. A., Kuznetsova, I. M., Uversky, V. N., and Turoverov, K. K. (2010) Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils, PLoS One, 5, e15385.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. I. Grigorashvili
    • 1
  • O. M. Selivanova
    • 1
  • N. V. Dovidchenko
    • 1
  • U. F. Dzhus
    • 1
  • A. O. Mikhailina
    • 1
  • M. Yu. Suvorina
    • 1
  • V. V. Marchenkov
    • 1
  • A. K. Surin
    • 1
    • 2
  • O. V. Galzitskaya
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.State Research Center for Applied Microbiology and BiotechnologyObolensk, Moscow RegionRussia

Personalised recommendations