Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 5, pp 521–529 | Cite as

Internal initiation of translation of mRNA in the methylotrophic yeast Hansenula polymorpha

  • E. S. Mardanova
  • A. V. Beletsky
  • N. V. RavinEmail author
Article

Abstract

Besides regular cap-dependent translation of mRNA, eukaryotes exploit internal initiation of translation driven by internal ribosome entry sites (IRESs). It is supposed that internal initiation provides translation of cellular mRNAs under stress conditions where the cap-dependent initiation is reduced. A number of IRESs have been characterized in mammalian mRNAs, but only a few examples are known in lower eukaryotes, particularly in yeasts. Here we identified two IRESs in the thermotolerant methylotrophic yeast Hansenula polymorpha DL-1. These sites are located in 5′-untranslated regions of genes HPODL_02249 and HPODL_04025 encoding a hypothetical membrane protein and actin-binding protein, respectively. In Saccharomyces cerevisiae cells, both IRESs drive expression of a second gene of a bicistronic mRNA, as well as translation of hairpin-containing monocistronic mRNA. The possibility of spurious splicing or presence of a cryptic promoter in the IRES sequences was ruled out, indicating that expression of a second gene of a bicistronic mRNA was IRESdependent. We evaluated IRES activity of both elements and found that under normal physiological conditions its contribution to the overall translation of the respective mRNAs in yeast cells is about 0.3-0.4%. Therefore, these results suggest that the IRES-dependent translation initiation mechanism exists in Hansenula polymorpha.

Keywords

mRNA translation internal initiation of translation IRES yeast Hansenula polymorpha DL-1 

Abbreviations

GFP

green fluorescent protein

GUS

ß-glucuronidase

IRES

internal ribosome entry site

UTR

untranslated region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C., and Wimmer, E. (1988) A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation, J. Virol., 62, 2636–2643.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Pelletier, J., and Sonenberg, N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA, Nature, 334, 320–325.CrossRefPubMedGoogle Scholar
  3. 3.
    Macejak, D. G., and Sarnow, P. (1991) Internal initiation of translation mediated by the 5' leader of a cellular mRNA, Nature, 353, 90–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Hellen, C. U., and Sarnow, P. (2001) Internal ribosome entry sites in eukaryotic mRNA molecules, Genes Dev., 15, 1593–1612.CrossRefPubMedGoogle Scholar
  5. 5.
    Stoneley, M., and Willis, A. E. (2004) Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression, Oncogene, 23, 32003207.Google Scholar
  6. 6.
    Bonnal, S., Boutonnet, C., Prado-Lourenco, L., and Vagner, S. (2003) IRESdb: the Internal Ribosome Entry Site database, Nucleic Acids Res., 31, 427–428.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Baird, S. D., Turcotte, M., Korneluk, R. G., and Holcik, M. (2006) Searching for IRES, RNA, 12, 1755–1785.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mokrejs, M., Masek, T., Vopalensky, V., Hlubucek, P., Delbos, P., and Pospisek, M. (2010) IRESite–a tool for the examination of viral and cellular internal ribosome entry sites, Nucleic Acids Res., 38 (Database issue), D131–D136.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gilbert, W. V., Zhou, K., Butler, T. K., and Doudna, J. A. (2007) Cap-independent translation is required for starvation-induced differentiation in yeast, Science, 317, 12241227.Google Scholar
  10. 10.
    Liang, S., Wang, B., Pan, L., Ye, Y., He, M., Han, S., Zheng, S., Wang, X., and Lin, Y. (2012) Comprehensive structural annotation of Pichia pastoris transcriptome and the response to various carbon sources using deep pairedend RNA sequencing, BMC Genomics, 13, 738.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Veenhuis, M., Van Der Klei, I. J., Titorenko, V., and Harder, W. (1992) Hansenula polymorpha: an attractive model organism for molecular studies of peroxisome biogenesis and function, FEMS Microbiol. Lett., 79, 393–403.CrossRefGoogle Scholar
  12. 12.
    Hollenberg, C. P., and Gellissen, G. (1997) Production of recombinant proteins by methylotrophic yeasts, Curr. Opin. Biotechnol., 8, 554–560.CrossRefPubMedGoogle Scholar
  13. 13.
    Mardanova, E. S., Zamchuk, L. A., and Ravin, N. V. (2009) The leader sequence of maize alcohol dehydrogenase gene ensures internal initiation of mRNA translation in yeast cells, Dokl. Biochem. Biophys., 426, 161–163.CrossRefPubMedGoogle Scholar
  14. 14.
    Mardanova, E. S., Zamchuk, L. A., Skulachev, M. V., and Ravin, N. V. (2008) The 5' untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site, Gene, 420, 11–16.CrossRefPubMedGoogle Scholar
  15. 15.
    Gietz, R. D., and Schiestl, R. H. (2007) Large-scale highefficiency yeast transformation using the LiAc/SS carrier DNA/PEG method, Nat. Protoc., 2, 38–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Jefferson, R. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system, Plant Mol. Biol. Rep., 5, 387405.CrossRefGoogle Scholar
  17. 17.
    Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R., and Hofacker, I. L. (2008) The Vienna RNA website, Nucleic Acids Res., 36, 70–74.CrossRefGoogle Scholar
  18. 18.
    Ravin, N. V., Eldarov, M. A., Kadnikov, V. V., Beletsky, A. V., Schneider, J., Mardanova, E. S., Smekalova, E. M., Zvereva, M. I., Dontsova, O. A., Mardanov, A. V., and Skryabin, K. G. (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1, BMC Genomics, 14, 837.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Grillo, G., Turi, A., Licciulli, F., Mignone, F., Liuni, S., Banfi, S., Gennarino, V. A., Horner, D. S., Pavesi, G., Picardi, E., and Pesole, G. (2010) TRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs, Nucleic Acids Res., 38, D75–80.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Altmann, M., Muller, P. P., Wittmer, B., Ruchti, F., Lanker, S., and Trachsel, H. (1993) A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity, EMBO J., 12, 39974003.Google Scholar
  21. 21.
    Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., Gleba, Y. Y., Hohn, T., and Atabekov, J. G. (2002) Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry, Proc. Natl. Acad. Sci. USA, 99, 5301–5306.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kozak, M. (2001) New ways of initiating translation in eukaryotes? Mol. Cell. Biol., 21, 1899–1907.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kozak, M. (2005) Second look at cellular mRNA sequences said to function as internal ribosome entry sites, Nucleic Acids Res., 33, 6593–6602.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Komar, A. A., and Hatzoglou, M. (2005) Internal ribosome entry sites in cellular mRNAs: mystery of their existence, J. Biol. Chem., 280, 23425–23428.CrossRefPubMedGoogle Scholar
  25. 25.
    Holcik, M., and Sonenberg, N. (2005) Translational control in stress and apoptosis, Nat. Rev. Mol. Cell Biol., 6, 318327.CrossRefGoogle Scholar
  26. 26.
    Kozak, M. (2007) Lessons (not) learned from mistakes about translation, Gene, 403, 194–203.CrossRefPubMedGoogle Scholar
  27. 27.
    Makelainen, K. J., and Makinen, K. (2007) Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts, Gene, 391, 275–284.CrossRefPubMedGoogle Scholar
  28. 28.
    Verge, V., Vonlanthen, M., Masson, J. M., Trachsel, H., and Altmann, M. (2004) Localization of a promoter in the putative internal ribosome entry site of the Saccharomyces cerevisiae TIF4631 gene, RNA, 10, 277–286.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mardanova, E. S., Zamchuk, L. A., and Ravin, N. V. (2008) Contribution of internal initiation to translation of cellular mRNAs containing IRESs, Boichem. Soc. Trans., 36, 694–697.CrossRefGoogle Scholar
  30. 30.
    Altmann, M., Blum, S., Pelletier, J., Sonenberg, N., Wilson, T. M., and Trachsel, H. (1990) Translation initiation factor-dependent extracts from Saccharomyces cerevisiae, Biochim. Biophys. Acta, 1050, 155–159.CrossRefPubMedGoogle Scholar
  31. 31.
    Thompson, S. R., Gulyas, K. D., and Sarnow, P. (2001) Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element, Proc. Natl. Acad. Sci. USA, 98, 1297212977.Google Scholar
  32. 32.
    Komar, A. A., Lesnik, T., Cullin, C., Merrick, W. C., Trachsel, H., and Altmann, M. (2003) Internal initiation drives the synthesis of Ure2 protein lacking the prion domain and affects [URE3] propagation in yeast cells, EMBO J., 22, 1199–1209.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Beletsky, A. V., Malyavko, A. N., Sukhanova, M. V., Mardanova, E. S., Zvereva, M. E., Mardanov, A. V., Dontsova, O. A., Lavrik, O. I., and Ravin, N. V. (2015) Expression of genes involved in DNA repair and telomere maintenance in the yeast Hansenula polymorpha DL1 under heat stress, Dokl. Biochem. Biophys., 462, 185–188.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. S. Mardanova
    • 1
  • A. V. Beletsky
    • 1
  • N. V. Ravin
    • 1
    Email author
  1. 1.Institute of Bioengineering, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations