Biochemistry (Moscow)

, Volume 81, Issue 5, pp 511–520 | Cite as

Neuroprotective effect of carnosine on primary culture of rat cerebellar cells under oxidative stress

  • A. V. LopachevEmail author
  • O. M. Lopacheva
  • D. A. Abaimov
  • O. V. Koroleva
  • E. A. Vladychenskaya
  • A. A. Erukhimovich
  • T. N. Fedorova


Dipeptide carnosine (β-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatographymass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells.


carnosine AAPH rotenone oxidative stress neuron antioxidant neuroprotective effect 



2,2'-azobis(2-amidinopropane)dihy-drochloride carnosine, ß-alanyl-L-histidine


central nervous system




mitogen-activated protein kinases




3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide


peptide transporters 1 and 2


reactive oxygen species




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warner, D. S., Sheng, H., and Batinic-Haberle, I. (2004) Oxidants, antioxidants and the ischemic brain, J. Exp. Biol., 207, 3221–3231.CrossRefPubMedGoogle Scholar
  2. 2.
    Zuo, L., and Motherwell, M. S. (2013) The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease, Gene, 532, 18–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Boldyrev, A., Bulygina, E., and Makhro, A. (2004) Glutamate receptors modulate oxidative stress in neuronal cells, a mini-review, Neurotox. Res., 6, 581–587.CrossRefPubMedGoogle Scholar
  4. 4.
    Boldyrev, A. A., and Kukley, M. L. (1996) Free radicals in normal and ischemic brain, Neirokhimiya, 13, 271–278.Google Scholar
  5. 5.
    Illarioshkin, S. N. (2003) Conformational Diseases of Brain [in Russian], Janus-K, Moscow.Google Scholar
  6. 6.
    Lu, Y. M., Yin, H. Z., Chiang, J., and Weiss, J. H. (1996) Ca2+-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury, J. Neurosci., 16, 5457–5465.PubMedGoogle Scholar
  7. 7.
    Nicholls, D. G., and Scott, I. D. (1980) The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membranepotential-dependent calcium-ion efflux mechanisms, Biochem. J., 186, 833–839.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mark, L. P., Prost, R. W., Ulmer, J. L., Smith, M. M., Daniels, D. L., Strottmann, J. M., Brown, W. D., and Hacein-Bey, L. (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging, Am. J. Neuroradiol., 22, 1813–1824.PubMedGoogle Scholar
  9. 9.
    Rafalowska, J. (2002) Experimental and human ischemia: is the penumbra present in human ischaemic stroke? Folia Neuropathol., 40, 211–217.PubMedGoogle Scholar
  10. 10.
    Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., Gopas, J., and Nishigaki, I. (2014) Antioxidants and human diseases, Clin. Chim. Acta, 436, 332–347.CrossRefPubMedGoogle Scholar
  11. 11.
    Boldyrev, A. A., Stvolinsky, S. L., and Fedorova, T. N. (2007) Carnosine: endogenous physiological corrector of antioxidative system activity, Usp. Fiziol. Nauk, 38, 57–71.PubMedGoogle Scholar
  12. 12.
    Boldyrev, A., and Abe, H. (1999) Metabolic transformation of neuropeptide carnosine modifies its biological activity, Cell. Mol. Neurobiol., 19, 163–175.CrossRefPubMedGoogle Scholar
  13. 13.
    Boldyrev, A. A. (2012) Carnosine: new concept for the function of an old molecule, Biochemistry (Moscow), 77, 313–326.PubMedGoogle Scholar
  14. 14.
    Boldyrev, A. A., Stvolinsky, S. L., Fedorova, T. N., and Suslina, Z. A. (2010) Carnosine as a natural antioxidant and geroprotector: from molecular mechanisms to clinical trials, Rejuv. Res., 13, 156–158.CrossRefGoogle Scholar
  15. 15.
    Dobrota, D., Fedorova, T. N., Stepanova, M. S., Babusikova, E., Statelova, D., Tatarkova, Z., Stvolinsky, S. S., and Boldyrev, A. A. (2010) Oxidative stress induced in rat brain by a combination of 3-nitropropionic acid and global ischemia, Int. J. Clin. Exp. Med., 3, 144–151.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Afshin-Majd, S., Khalili, M., Roghani, M., Mehranmehr, N., and Baluchnejadmojarad, T. (2015) Carnosine exerts neuroprotective effect against 6-hydroxydopamine toxicity in hemiparkinsonian rat, Mol. Neurobiol., 51, 1064–1070.CrossRefPubMedGoogle Scholar
  17. 17.
    Fedorova, T. N., Stvolinsky, S. L., Bagyeva, G. H., Ivanova-Smolenskaia, I. A., and Illarioshkin, S. N. (2005) Neurodegenerative alterations induced by MPTP neurotoxin in senescence accelerated mice essay, Usp. Fiziol. Nauk, 36, 94–101.PubMedGoogle Scholar
  18. 18.
    Pavlov, A. R., Revina, A. A., Dupin, A. M., Boldyrev, A. A., and Iaropolov, A. I. (1990) Interactions of carnosine and superoxide radicals in aqueous solutions, Byul. Eksp. Biol. Med., 10, 391–393.Google Scholar
  19. 19.
    Boldyrev, A. A., Kurella, E. G., Rubtsov, A. M., Tiulina, O. V., Shara, M., and Shentiurts, M. (1992) Direct measurement of the interaction of carnosine and its analogs with free radicals, Biokhimiya, 57, 1360–1365.Google Scholar
  20. 20.
    Gorbunov, N. V., and Erin, A. N. (1991) Mechanism of antioxidant action of carnosine, Byul. Eksp. Biol. Med., 111, 477–478.CrossRefGoogle Scholar
  21. 21.
    Tamba, M., and Torreggiani, A. (1998) A pulse radiolysis study of carnosine in aqueous solution, Int. J. Radiat. Biol., 74, 333–340.CrossRefPubMedGoogle Scholar
  22. 22.
    Boldyrev, A. A., Johnson, P., Wei, Y., Tan, Y., and Carpenter, D. O. (1999) Carnosine and taurine protect rat cerebellar granular cells from free radical damage, Neurosci. Lett., 263, 169–172.CrossRefPubMedGoogle Scholar
  23. 23.
    Xiang, J., Hu, Y., Smith, D. E., and Keep, R. F. (2006) PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes, Brain Res., 1122, 18–23.Google Scholar
  24. 24.
    Sofic, E., Sapcanin, A., Tahirovic, I., Gavrankapetanovic, I., Jellinger, K., Reynolds, G. P., Tatschner, T., and Riederer, P. (2006) Antioxidant capacity in postmortem brain tissues of Parkinson’s and Alzheimer’s diseases, J. Neural Transm. Suppl., 39–43.Google Scholar
  25. 25.
    Lakshminarayana, R., Aruna, G., Sathisha, U. V., Dharmesh, S. M., and Baskaran, V. (2013) Structural elucidation of possible lutein oxidation products mediated through peroxyl radical inducer 2,2'-azobis(2-methylpropionamidine)dihydrochloride: antioxidant and cytotoxic influence of oxidized lutein in HeLa cells, Chem. Biol. Interact., 203, 448–455.CrossRefPubMedGoogle Scholar
  26. 26.
    Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A., and Robinson, J. P. (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production, J. Biol. Chem., 278, 8516–8525.CrossRefPubMedGoogle Scholar
  27. 27.
    Gao, H. M., Liu, B., and Hong, J. S. (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons, J. Neurosci., 23, 6181–6187.PubMedGoogle Scholar
  28. 28.
    Voronkov, D. N., Dikalova, Y. V., Khudoerkov, R. M., and Yamshikova, N. G. (2013) Brain nigrostriatal system changes in rotenone-induced parkinsonism, Ann. Clin. Exp. Neurol., 7, 34–39.Google Scholar
  29. 29.
    LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol., 5, 227–231.CrossRefPubMedGoogle Scholar
  30. 30.
    Vladimirov, Y. A. (1996) Studies of antioxidant activity by measuring chemiluminescence kinetics, Proc. Int. Symp. on Natural Antioxidants, AOCS Publishing, pp. 125–144.CrossRefGoogle Scholar
  31. 31.
    Sariev, A. K., Abaimov, D. A., Tankevich, M. V., Pantyukhova, E. Y., Prokhorov, D. I., Fedorova, T. N., Lopachev, A. V., Stvolinskii, S. L., Konovalova, E. V., and Seifulla, R. D. (2015) Experimental study of the basic pharmacokinetic characteristics of dipeptide carnosine and its efficiency of penetration into brain tissues, Eksp. Klin. Farmakol., 78, 30–35.PubMedGoogle Scholar
  32. 32.
    Kramer, D., and Minichiello, L. (2010) Cell culture of primary cerebellar granule cells, Methods Mol. Biol., 633, 233–239.CrossRefPubMedGoogle Scholar
  33. 33.
    O’Dowd, J. J., Cairns, M. T., Trainor, M., Robins, D. J., and Miller, D. J. (1990) Analysis of carnosine, homocarnosine, and other histidyl derivatives in rat brain, J. Neurochem., 55, 446–452.PubMedGoogle Scholar
  34. 34.
    Margolis, F. L. (1974) Carnosine in the primary olfactory pathway, Science, 184, 909–911.CrossRefPubMedGoogle Scholar
  35. 35.
    Fedorova, T. N. (2003) Application of chemiluminescent analysis for comparative assessment of antioxidant activity of some pharmacological compounds, Eksp. Klin. Farmakol., 66, 56–58.PubMedGoogle Scholar
  36. 36.
    Beliaev, M. S. (2008) Carnosine as a Factor for Endoecological Protection of the Body from Damage Caused by Oxidative Stress: PhD thesis [in Russian], RUDN University, Moscow.Google Scholar
  37. 37.
    Konovalova, E. V., Fedorova, T. N., Makletsova, M. G., and Berezov, T. T. (2013) Protective effect of carnosine under acrolein toxicity in PC-12 cells, Vopr. Biol. Med. Farm. Khim., 6, 43–48.Google Scholar
  38. 38.
    Fujita, T., Kishida, T., Wada, M., Okada, N., Yamamoto, A., Leibach, F. H., and Ganapathy, V. (2004) Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H+/peptide transporter PEPT2, Brain Res., 997, 52–61.CrossRefPubMedGoogle Scholar
  39. 39.
    Wolf, J. P., Bouhaddi, M., Louisy, F., Mikehiev, A., Mourot, L., Cappelle, S., Vuillier, F., Andre, P., Rumbach, L., and Regnard, J. (2006) Side-effects of L-DOPA on venous tone in Parkinson’s disease: a leg-weighing assessment, Clin. Sci. (London), 110, 369–377.CrossRefGoogle Scholar
  40. 40.
    Sayin, V. I., Ibrahim, M. X., Larsson, E., Nilsson, J. A., Lindahl, P., and Bergo, M. O. (2014) Antioxidants accelerate lung cancer progression in mice, Sci. Transl. Med., 6, 221a15.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Lopachev
    • 1
    • 2
    Email author
  • O. M. Lopacheva
    • 1
    • 3
  • D. A. Abaimov
    • 1
  • O. V. Koroleva
    • 2
  • E. A. Vladychenskaya
    • 1
    • 4
  • A. A. Erukhimovich
    • 2
  • T. N. Fedorova
    • 1
  1. 1.Research Center of NeurologyMoscowRussia
  2. 2.Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Lomonosov Moscow State UniversityInternational Biotechnological CenterMoscowRussia
  4. 4.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia

Personalised recommendations