Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 5, pp 481–490 | Cite as

Phylogenomic analysis identifies a sodium-translocating decarboxylating oxidoreductase in thermotogae

  • O. I. Klimchuk
  • D. V. Dibrova
  • A. Y. MulkidjanianEmail author
Article

Abstract

Bacterial sodium-dependent decarboxylases were the first enzymes exemplifying sodium-dependent bioenergetics. These enzyme complexes couple decarboxylation of organic acids with the export of sodium ions via a special membrane subunit. In 711 representative prokaryotic genomes, we have analyzed genomic neighborhoods of the genes that code the membrane subunit of sodium decarboxylases. In representatives of Thermotogae, the operons with the gene of this subunit lack the genes of subunits that perform non-oxidative decarboxylation. Instead, these operons contain the genes of alphaand delta-subunits of decarboxylating oxidoreductases of alpha-ketoacids. The genes of betaand gamma-subunits of the decarboxylating oxidoreductases were found within the genomes of respective Thermotogae species as separate, twogene operons. We suggest that the described two operons code together for sodium-translocating decarboxylating oxidoreductases capable of coupling oxidative decarboxylation of alpha-ketoacids with the export of sodium ions, which is a novel type of bioenergetic coupling.

Keywords

sodium transport membrane bioenergetics comparative genomics phylogenetic analysis ferredoxin molecular evolution anaerobic bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2016_256_MOESM1_ESM.pdf (924 kb)
Supplementary material, approximately 924 KB.

References

  1. 1.
    Skulachev, V. P. (1984) Sodium bioenergetics, Trends Biochem. Sci., 9, 483–485.CrossRefGoogle Scholar
  2. 2.
    Skulachev, V. P. (1985) Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion, Eur. J. Biochem., 151, 199–208.CrossRefPubMedGoogle Scholar
  3. 3.
    Chernyak, B. V., Dibrov, P. A., Glagolev, A. N., Sherman, M. Y., and Skulachev, V. P. (1983) A novel type of energetics in a marine alkali-tolerant bacterium delta-muna-driven motility and sodium cycle, FEBS Lett., 164, 38–42.CrossRefGoogle Scholar
  4. 4.
    Cramer, W. A., and Knaff, D. B. (1990) Energy Transduction in Biological Membranes: A Textbook of Bioenergetics, Springer Verlag.CrossRefGoogle Scholar
  5. 5.
    Dimroth, P. (1994) Bacterial sodium ion-coupled energetics, Antonie Van Leeuwenhoek, 65, 381–395.CrossRefPubMedGoogle Scholar
  6. 6.
    Hase, C. C., Fedorova, N. D., Galperin, M. Y., and Dibrov, P. A. (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons, Microbiol. Mol. Biol. Rev., 65, 353–370.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mulkidjanian, A. Y., Dibrov, P., and Galperin, M. Y. (2008) The past and present of sodium energetics: may the sodium-motive force be with you, Biochim. Biophys. Acta, 1777, 985–992.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mulkidjanian, A. Y., Galperin, M. Y., and Koonin, E. V. (2009) Co-evolution of primordial membranes and membrane proteins, Trends Biochem. Sci., 34, 206–215.Google Scholar
  9. 9.
    Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2008) Evolutionary primacy of sodium bioenergetics, Biol. Direct, 3, 13.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dibrova, D. V., Galperin, M. Y., Koonin, E. V., and Mulkidjanian, A. Y. (2015) Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics, Biochemistry (Moscow), 80, 495–516.CrossRefGoogle Scholar
  11. 11.
    Macallum, A. B. (1926) The paleochemistry of the body fluids and tissues, Physiol. Rev., 6, 316–357.Google Scholar
  12. 12.
    Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and Koonin, E. V. (2012) Origin of first cells at terrestrial, anoxic geothermal fields, Proc. Natl. Acad. Sci. USA, 109, 821–830.CrossRefGoogle Scholar
  13. 13.
    Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and Koonin, E. V. (2012) Open questions on the origin of life at anoxic geothermal fields, Orig. Life Evol. Biosph., 42, 507–516.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Galimov, E. M., Natochin, Y. V., Ryzhenko, B. N., and Cherkasova, E. V. (2012) Chemical composition of the primary aqueous phase of the Earth and origin of life, Geochem. Int., 50, 1048–1068.CrossRefGoogle Scholar
  15. 15.
    Maruyama, S., Ikoma, M., Genda, H., Hirose, K., Yokoyama, T., and Santosh, M. (2013) The naked planet Earth: most essential pre-requisite for the origin and evolution of life, Geosci. Front., 4, 141–165.CrossRefGoogle Scholar
  16. 16.
    Dimroth, P. (1980) A new sodium-transport system energized by the decarboxylation of oxaloacetate, FEBS Lett., 122, 234–236.CrossRefPubMedGoogle Scholar
  17. 17.
    Buckel, W. (2001) Sodium ion-translocating decarboxylases, Biochim. Biophys. Acta, 1505, 15–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Hilpert, W., and Dimroth, P. (1982) Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient, Nature, 296, 584–585.CrossRefPubMedGoogle Scholar
  19. 19.
    Buckel, W., and Semmler, R. (1982) A biotin-dependent sodium pump: glutaconyl-CoA decarboxylase from Acidaminococcus fermentans, FEBS Lett., 148, 35–38.CrossRefPubMedGoogle Scholar
  20. 20.
    Hilbi, H., Dehning, I., Schink, B., and Dimroth, P. (1992) Malonate decarboxylase of Malonomonas rubra, a novel type of biotin-containing acetyl enzyme, Eur. J. Biochem., 207, 117–123.PubMedGoogle Scholar
  21. 21.
    Berg, M., Hilbi, H., and Dimroth, P. (1997) Sequence of a gene cluster from Malonomonas rubra encoding components of the malonate decarboxylase Na+ pump and evidence for their function, Eur. J. Biochem., 245, 103–115.CrossRefPubMedGoogle Scholar
  22. 22.
    Studer, R., Dahinden, P., Wang, W. W., Auchli, Y., Li, X. D., and Dimroth, P. (2007) Crystal structure of the carboxyltransferase domain of the oxaloacetate decarboxylase Na+ pump from Vibrio cholerae, J. Mol. Biol., 367, 547–557.CrossRefPubMedGoogle Scholar
  23. 23.
    Benning, M. M., Haller, T., Gerlt, J. A., and Holden, H. M. (2000) New reactions in the crotonase superfamily: structure of methylmalonyl-CoA decarboxylase from Escherichia coli, Biochemistry, 39, 4630–4639.CrossRefPubMedGoogle Scholar
  24. 24.
    Wendt, K. S., Schall, I., Huber, R., Buckel, W., and Jacob, U. (2003) Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase, EMBO J., 22, 3493–3502.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kress, D., Brugel, D., Schall, I., Linder, D., Buckel, W., and Essen, L. O. (2009) An asymmetric model for Na+translocating glutaconyl-CoA decarboxylases, J. Biol. Chem., 284, 28401–28409.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L., Tate, J., and Punta, M. (2014) Pfam: the protein families database, Nucleic Acids Res., 42 (Database issue), 222–230.CrossRefGoogle Scholar
  27. 27.
    Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database, Nucleic Acids Res., 43 (Database issue), 261–269.CrossRefGoogle Scholar
  28. 28.
    Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Klimchuk, O. I., Dibrova, D. V., and Mulkidjanian, A. Y. (2015) OLESA: Operon Loci Examination and Sorting Application, Proceedings of the Moscow Conference on Computational Molecular Biology (MCCMB), Moscow.Google Scholar
  31. 31.
    Brouwer, R. W., Kuipers, O. P., and Van Hijum, S. A. (2008) The relative value of operon predictions, Brief. Bioinform., 9, 367–375.CrossRefPubMedGoogle Scholar
  32. 32.
    Blamey, J. M., and Adams, M. W. (1994) Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima, Biochemistry, 33, 1000–1007.CrossRefPubMedGoogle Scholar
  33. 33.
    Eram, M. S., Wong, A., Oduaran, E., and Ma, K. (2015) Molecular and biochemical characterization of bifunctional pyruvate decarboxylases and pyruvate ferredoxin oxidoreductases from Thermotoga maritima and Thermotoga hypogea, J. Biochem., 158, 459–466.PubMedGoogle Scholar
  34. 34.
    Kletzin, A., and Adams, M. W. (1996) Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima, J. Bacteriol., 178, 248–257.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Tersteegen, A., Linder, D., Thauer, R. K., and Hedderich, R. (1997) Structures and functions of four anabolic 2oxoacid oxidoreductases in Methanobacterium thermoautotrophicum, Eur. J. Biochem., 244, 862–868.CrossRefPubMedGoogle Scholar
  36. 36.
    Yun, N. R., Arai, H., Ishii, M., and Igarashi, Y. (2001) The genes for anabolic 2-oxoglutarate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6, Biochem. Biophys. Res. Commun., 282, 589–594.CrossRefPubMedGoogle Scholar
  37. 37.
    Kerscher, L., and Oesterhelt, D. (1981) The catalytic mechanism of 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. One-electron transfer at two distinct steps of the catalytic cycle, Eur. J. Biochem., 116, 595–600.CrossRefPubMedGoogle Scholar
  38. 38.
    Furdui, C., and Ragsdale, S. W. (2000) The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood–Ljungdahl pathway, J. Biol. Chem., 275, 28494–28499.CrossRefPubMedGoogle Scholar
  39. 39.
    Chabriere, E., Charon, M. H., Volbeda, A., Pieulle, L., Hatchikian, E. C., and Fontecilla-Camps, J. C. (1999) Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate, Nat. Struct. Biol., 6, 182–190.PubMedGoogle Scholar
  40. 40.
    Chabriere, E., Vernede, X., Guigliarelli, B., Charon, M. H., Hatchikian, E. C., and Fontecilla-Camps, J. C. (2001) Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase, Science, 294, 2559–2563.CrossRefPubMedGoogle Scholar
  41. 41.
    Gibson, M. I., Brignole, E. J., Pierce, E., Can, M., Ragsdale, S. W., and Drennan, C. L. (2015) The structure of an oxalate oxidoreductase provides insight into microbial 2-oxoacid metabolism, Biochemistry, 54, 4112–4120.CrossRefPubMedGoogle Scholar
  42. 42.
    Pierce, E., Becker, D. F., and Ragsdale, S. W. (2010) Identification and characterization of oxalate oxidoreductase, a novel thiamine pyrophosphate-dependent 2-oxoacid oxidoreductase that enables anaerobic growth on oxalate, J. Biol. Chem., 285, 40515–40524.PubMedGoogle Scholar
  43. 43.
    Baughn, A. D., Garforth, S. J., Vilcheze, C., and Jacobs, W. R., Jr. (2009) An anaerobic-type a-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis, PLoS Pathog., 5, e1000662.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wild, M. R., Pos, K. M., and Dimroth, P. (2003) Sitedirected sulfhydryl labeling of the oxaloacetate decarboxylase Na+ pump of Klebsiella pneumoniae: helix VIII comprises a portion of the sodium ion channel, Biochemistry, 42, 11615–11624.CrossRefPubMedGoogle Scholar
  45. 45.
    Schmid, M., Vorburger, T., Pos, K. M., and Dimroth, P. (2002) Role of conserved residues within helices IV and VIII of the oxaloacetate decarboxylase ß-subunit in the energy coupling mechanism of the Na+ pump, Eur. J. Biochem., 269, 2997–3004.CrossRefPubMedGoogle Scholar
  46. 46.
    Meier, T., Krah, A., Bond, P. J., Pogoryelov, D., Diederichs, K., and Faraldo-Gomez, J. D. (2009) Complete ion-coordination structure in the rotor ring of Na+-dependent FATP synthases, J. Mol. Biol., 391, 498–507.CrossRefPubMedGoogle Scholar
  47. 47.
    Skulachev, V. P. (1988) Membrane Bioenergetics, Springer Verlag, Heidelberg.CrossRefGoogle Scholar
  48. 48.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2012) Principles of Bioenergetics, Springer, Heidelberg.Google Scholar
  49. 49.
    Stephens, P. J., Jollie, D. R., and Warshel, A. (1996) Protein control of redox potentials of iron-sulfur proteins, Chem. Rev., 96, 2491–2513.CrossRefPubMedGoogle Scholar
  50. 50.
    Baltscheffsky, H., Von Stedingk, L. V., Heldt, H. W., and Klingenberg, M. (1966) Inorganic pyrophosphate: formation in bacterial photophosphorylation, Science, 153, 11201122.CrossRefGoogle Scholar
  51. 51.
    Malinen, A. M., Belogurov, G. A., Baykov, A. A., and Lahti, R. (2007) Na+-pyrophosphatase: a novel primary sodium pump, Biochemistry, 46, 8872–8878.CrossRefPubMedGoogle Scholar
  52. 52.
    Racker, E. (1962) Studies of factors involved in oxidative phosphorylation, Proc. Natl. Acad. Sci. USA, 48, 16591663.CrossRefGoogle Scholar
  53. 53.
    Laubinger, W., and Dimroth, P. (1988) Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump, Biochemistry, 27, 7531–7537.CrossRefPubMedGoogle Scholar
  54. 54.
    Takase, K., Yamato, I., and Kakinuma, Y. (1993) Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na+-ATPase from Enterococcus hirae. Coexistence of vacuolarand F0F1-type ATPases in one bacterial cell, J. Biol. Chem., 268, 11610–11616.PubMedGoogle Scholar
  55. 55.
    Solioz, M., and Davies, K. (1994) Operon of vacuolar-type Na+-ATPase of Enterococcus hirae, J. Biol. Chem., 269, 9453–9459.PubMedGoogle Scholar
  56. 56.
    Dibrova, D. V., Galperin, M. Y., and Mulkidjanian, A. Y. (2010) Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial Ftype membrane ATPase, Bioinformatics, 26, 1473–1476.Google Scholar
  57. 57.
    Soontharapirakkul, K., Promden, W., Yamada, N., Kageyama, H., Incharoensakdi, A., Iwamoto-Kihara, A., and Takabe, T. (2011) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0ATP synthase with a potential role in salt-stress tolerance, J. Biol. Chem., 286, 10169–10176.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cheng, J., Guffanti, A. A., and Krulwich, T. A. (1997) A two-gene ABC-type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore, Mol. Microbiol., 23, 1107–1120.CrossRefPubMedGoogle Scholar
  59. 59.
    Becher, B., Muller, V., and Gottschalk, G. (1992) N5methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Go1 is an Na+-translocating membrane protein, J. Bacteriol., 174, 7656–7660.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1961) Reconstitution of the electron transport system. I. Preparation and properties of the interacting enzyme complexes, Biochem. Biophys. Res. Commun., 4, 441–446.CrossRefPubMedGoogle Scholar
  61. 61.
    Roberts, P. G., and Hirst, J. (2012) The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter, J. Biol. Chem., 287, 34743–34751.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Castro, P. J., Silva, A. F., Marreiros, B. C., Batista, A. P., and Pereira, M. M. (2015) Respiratory complex I: a dual relation with H+ and Na+? Biochim. Biophys. Acta, pii: S0005-2728(15)00253-4.Google Scholar
  63. 63.
    Schmehl, M., Jahn, A., Meyer zu Vilsendorf, A., Hennecke, S., Masepohl, B., Schuppler, M., Marxer, M., Oelze, J., and Klipp, W. (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase, Mol. Gen. Genet., 241, 602–615.CrossRefPubMedGoogle Scholar
  64. 64.
    Biegel, E., and Muller, V. (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase, Proc. Natl. Acad. Sci. USA, 107, 18138–18142.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bohm, R., Sauter, M., and Bock, A. (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components, Mol. Microbiol., 4, 231–243.CrossRefPubMedGoogle Scholar
  66. 66.
    McTernan, P. M., Chandrayan, S. K., Wu, C. H., Vaccaro, B. J., Lancaster, W. A., Yang, Q., Fu, D., Hura, G. L., Tainer, J. A., and Adams, M. W. (2014) Intact functional fourteen-subunit respiratory membrane-bound [NiFe]hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus, J. Biol. Chem., 289, 19364–19372.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tokuda, H., and Unemoto, T. (1982) Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus, J. Biol. Chem., 257, 1000710014.Google Scholar
  68. 68.
    Ide, T., Baumer, S., and Deppenmeier, U. (1999) Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Go1: identification of two proton-translocating segments, J. Bacteriol., 181, 4076–4080.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1962) Studies on the electron transfer system. XLI. Reduced coenzyme Q (QH2)-cytochrome c reductase, J. Biol. Chem., 237, 1681–1685.PubMedGoogle Scholar
  70. 70.
    Fowler, L. R., Richardson, S. H., and Hatefi, Y. (1962) A rapid method for the preparation of highly purified cytochrome oxidase, Biochim. Biophys. Acta, 64, 170–173.CrossRefPubMedGoogle Scholar
  71. 71.
    Muntyan, M. S., Cherepanov, D. A., Malinen, A. M., Bloch, D. A., Sorokin, D. Y., Severina, I. I., Ivashina, T. V., Lahti, R., Muyzer, G., and Skulachev, V. P. (2015) Cytochrome cbb3 of Thioalkali vibrio is a Na+-pumping cytochrome oxidase, Proc. Natl. Acad. Sci. USA, 112, 76957700.CrossRefGoogle Scholar
  72. 72.
    Borisov, V. B., Gennis R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398–1413.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Oesterhelt, D., and Stoeckenius, W. (1973) Functions of a new photoreceptor membrane, Proc. Natl. Acad. Sci. USA, 70, 2853–2857.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Schobert, B., and Lanyi, J. K. (1982) Halorhodopsin is a light-driven chloride pump, J. Biol. Chem., 257, 1030610313.Google Scholar
  75. 75.
    Yoshizawa, S., Kumagai, Y., Kim, H., Ogura, Y., Hayashi, T., Iwasaki, W., DeLong, E. F., and Kogure, K. (2014) Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria, Proc. Natl. Acad. Sci. USA, 111, 6732–6737.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito H., Kogure, K., and Kandori, H. (2013) A light-driven sodium ion pump in marine bacteria, Nat. Commun., 4, 1678.CrossRefPubMedGoogle Scholar
  77. 77.
    Gushchin, I., Shevchenko, V., Polovinkin, V., Kovalev, K., Alekseev, A., Round, E., Borshchevskiy, V., Balandin, T., Popov, A., Gensch, T., Fahlke, C., Bamann, C., Willbold, D., Buldt, G., Bamberg, E., and Gordeliy, V. (2015) Crystal structure of a light-driven sodium pump, Nat. Struct. Mol. Biol., 22, 390–395.PubMedGoogle Scholar
  78. 78.
    Bogachev, A. V., Bertsova, Y. V., Verkhovskaya, M. L., Mamedov, M. D., and Skulachev, V. P. (2016) Real-time kinetics of electrogenic Na+ transport by rhodopsin from the marine flavobacterium Dokdonia sp. PRO95, Sci. Rep., 6, 21397.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shalaeva, D. N., Galperin, M. Y., and Mulkidjanian, A. Y. (2015) Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins, Biol. Direct., 10, 63.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dimroth, P. (1997) Primary sodium ion translocating enzymes, Biochim. Biophys. Acta, 1318, 11–51.CrossRefPubMedGoogle Scholar
  81. 81.
    Dimroth, P., and Von Ballmoos, C. (2008) ATP synthesis by decarboxylation phosphorylation, Results Probl. Cell Differ., 45, 153–184.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. I. Klimchuk
    • 1
  • D. V. Dibrova
    • 2
  • A. Y. Mulkidjanian
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.School of PhysicsOsnabrueck UniversityOsnabrueckGermany

Personalised recommendations