Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 5, pp 453–464 | Cite as

Biogenesis of micronuclei

  • O. P. Kisurina-Evgenieva
  • O. I. Sutiagina
  • G. E. Onishchenko
Reviews

Abstract

The presence of micronuclei in a cell is an indicator of DNA damage and genetic instability. In this review, mechanisms of emergence of micronuclei, their functional activity, and pathways of elimination are discussed. It is supposed that morphological and functional varieties of micronuclei as well as their degradation pathways can be determined by the chromosomal material localized inside these cell structures.

Keywords

micronucleus replication transcription repair elimination 

Abbreviations

DM-micronuclei

micronuclei derived from extrachromosomal double minute chromosomes

ER

endoplasmic reticulum

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhatia, A., and Kumar, Y. (2014) Relevance of microscopic indicators of chromosomal instability in routine reporting of malignancies, Diagn. Cytopathol., 42, 181–188.CrossRefPubMedGoogle Scholar
  2. 2.
    Milic, M., Frustaci, A., Del Bufalo, A., Sanchez-Alarcon, J., Valencia-Quintana, R., Russo, P., and Bonassi, S. (2015) DNA damage in non-communicable diseases: a clinical and epidemiological perspective, Mutat. Res., 776, 118–127.CrossRefPubMedGoogle Scholar
  3. 3.
    Torres-Bugarin, O., Macriz Romero, N., Ramos Ibarra, M. L., Flores-Garcia, A., Valdez Aburto, P., and ZavalaCerna, M. G. (2015) Genotoxic effect in autoimmune diseases evaluated by the micronucleus test assay: our experience and literature review, Biomed. Res. Int., doi: 10.1155/2015/194031.Google Scholar
  4. 4.
    Bhatia, A., and Kumar, Y. (2012) Cancer cell micronucleus: an update on clinical and diagnostic applications, APMIS, 121, 569–581.CrossRefPubMedGoogle Scholar
  5. 5.
    Fenech, M., Kirsch-Volders, M., Natarajan, A. T., Surralles, J., Crott, J. W., Parry, J., Norppa, H., Eastmond, D. A., Tucker, J. D., and Thomas, P. (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 26, 125–132.PubMedGoogle Scholar
  6. 6.
    Kirsch-Volders, M., Plas, G., Elhajouji, A., Lukamowicz, M., Gonzalez, L., Vande Loock, K., and Decordier, I. (2011) The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance, Arch. Toxicol., 85, 873899.Google Scholar
  7. 7.
    Mateuca, R., Lombaert, N., Aka, P. V., Decordier, I., and Kirsch-Volders, M. (2006) Chromosomal changes: induction, detection methods and applicability in human biomonitoring, Biochimie, 88, 1515–1531.PubMedGoogle Scholar
  8. 8.
    Fenech, M. (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations, Mutat. Res., 285, 35–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Kolmakova, T. C., Belik, C. N., Morgul, E. V., and Sevryukov, A. V. (2013) The Micronucleus Test for Evaluating the Efficiency of Allergy Treatment in Children. Methodical Recommendations [in Russian], Rostov-onDon.Google Scholar
  10. 10.
    Geraud, G., Laquerriere, F., Masson, C., Arnoult, J., Labidi, B., and Hernandez-Verdun, D. (1989) Threedimensional organization of micronuclei induced by colchicine in PtK1 cells, Exp. Cell Res., 181, 27–39.CrossRefPubMedGoogle Scholar
  11. 11.
    Kireev, I. I., Zatsepina, O. V., Polyakov, V. Y., and Chentsov, Y. S. (1988) Ultrastructure of mitotic chromosomes of the SPEV cell during their reversible artificial degeneration in vivo, Tsitologiya, 30, 926–932.Google Scholar
  12. 12.
    Gernand, D., Rutten, T., Varshney, A., Rubtsova, M., Prodanovic, S., Bruss, C., Kumlehn, J., Matzk, F., and Houben, A. (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation, Plant Cell, 17, 2431–2438.PubMedGoogle Scholar
  13. 13.
    Schiffmann, D., and De Boni, U. (1991) Dislocation of chromatin elements in prophase induced by diethylstilbestrol: a novel mechanism by which micronuclei can arise, Mutat. Res., 246, 113–122.CrossRefPubMedGoogle Scholar
  14. 14.
    Kisurina-Evgenieva, O. P., Sutiagina, O. I., and Onishchenko, G. E. (2014) Elimination of micronuclei induced by action of paclitaxel in the culture MCF-7 cells, Tsitologiya, 56, 660–661.Google Scholar
  15. 15.
    Fenech, M. (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death, Mutat. Res., 600, 58–66.CrossRefPubMedGoogle Scholar
  16. 16.
    Hermine, T., Jones, N. J., and Parry, J. M. (1997) Comparative induction of micronuclei in repair-deficient and -proficient Chinese hamster cell lines following clastogen or aneugen exposures, Mutat. Res., 392, 151–163.CrossRefPubMedGoogle Scholar
  17. 17.
    Perevodchikova, N. I. (2000) Chemotherapy of nonsmallcellular pulmonary cancer–the problem as it is in 2000, Prakt. Onkol., 29, 29–37.Google Scholar
  18. 18.
    Urmancheeva, A. F., and Ulrikh, E. A. (2008) Principles of treatment of uterus sarcoma, Prakt. Onkol., 9, 132–136.Google Scholar
  19. 19.
    Kisurina-Evgenieva, O. P., Bryantseva, S. A., Shtil’, A. A., and Onishchenko, G. E. (2006) Antitubulin agents can initiate different apoptotic pathways, Biophysics, 51, 771–775.CrossRefGoogle Scholar
  20. 20.
    Heit, R., Rattner, J. B., Chan, G. K., and Hendzel, M. J. (2009) G2 histone methylation is required for the proper segregation of chromosomes, J. Cell Sci., 122, 2957–2968.CrossRefPubMedGoogle Scholar
  21. 21.
    Luzhna, L., Kathiria, P., and Kovalchuk, O. (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond, Front. Genet., 4, 1–17.CrossRefGoogle Scholar
  22. 22.
    Chen, T., Yan, J., and Li, Y. (2014) Genotoxicity of titanium dioxide nanoparticles, J. Food Drug Anal., 22, 95–104.CrossRefPubMedGoogle Scholar
  23. 23.
    Cveticanin, J., Joksic, G., Leskovac, A., Petrovic, S., Sobot, A. V., and Neskovic, O. (2010) Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells, Nanotechnology, 21, 015102.CrossRefPubMedGoogle Scholar
  24. 24.
    Kawata, K., Osawa, M., and Okabe, S. (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells, Environ. Sci. Technol., 43, 60466051.CrossRefGoogle Scholar
  25. 25.
    Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., and Dusinska, M. (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles, Nanotoxicology, 8, 233–278.CrossRefPubMedGoogle Scholar
  26. 26.
    Vandebriel, R. J., and De Jong, W. H. (2012) A review of mammalian toxicity of ZnO nanoparticles, Nanotechnol. Sci. Appl., 15, 61–71.CrossRefGoogle Scholar
  27. 27.
    Bonassi, S., Neri, M., Lando, C., Ceppi, M., Lin, Y. P., Chang, W. P., Holland, N., Kirsch-Volders, M., Zeiger, E., and Fenech, M. (2003) HUMN collaborative group. Effect of smoking habit on the frequency of micronuclei in human lymphocytes: results from the Human Micronucleus project, Mutat. Res., 543, 155–166.CrossRefPubMedGoogle Scholar
  28. 28.
    Shibata, T., Shibamoto, Y., Sasai, K., Oya, N., Murata, R., Takagi, T., Hiraoka, M., Takahashi, M., and Abe, M. (1996) Tirapazamine: hypoxic cytotoxicity and interaction with radiation as assessed by the micronucleus assay, Br. J. Cancer Suppl., 27, 61–64.Google Scholar
  29. 29.
    Snyder, R. D., and Diehl, M. S. (2005) Hypoxia-induced micronucleus formation in mice, Drug Chem. Toxicol., 28, 373–358.CrossRefPubMedGoogle Scholar
  30. 30.
    Collet, G., El Hafny-Rahbi, B., Nadim, M., Tejchman, A., Klimkiewicz, K., and Kieda, C. (2015) Hypoxia-shaped vascular niche for cancer stem cells, Contemp. Oncol. (Pozn.), 19, 39–43.Google Scholar
  31. 31.
    Holland, A. J., and Cleveland, D. W. (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements, Nat. Med., 18, 1630–1638.PubMedGoogle Scholar
  32. 32.
    Krishnaja, A. P., and Sharma, N. K. (2004) Transmission of -ray-induced unstable chromosomal aberrations through successive mitotic divisions in human lymphocytes in vitro, Mutagenesis, 19, 299–305.CrossRefPubMedGoogle Scholar
  33. 33.
    Terradas, M., Martin, M., Tusell, L., and Genesca, A. (2009) DNA lesions sequestered in micronuclei induce a local defective-damage response, DNA Repair (Amst.), 8, 1225–1234.CrossRefGoogle Scholar
  34. 34.
    Cheong, H. S., Seth, I., Joiner, M. C., and Tucker, J. D. (2013) Relationships among micronuclei, nucleoplasmic bridges and nuclear buds within individual cells in the cytokinesis-block micronucleus assay, Mutagenesis, 28, 433–440.PubMedGoogle Scholar
  35. 35.
    Botto, N., Rizza, A., Colombo, M. G., Mazzone, A. M., Manfredi, S., Masetti, S., Clerico, A., Biagini, A., and Andreassi, M. G. (2011) Evidence for DNA damage in patients with coronary artery disease, Mutat. Res., 493, 23–30.CrossRefGoogle Scholar
  36. 36.
    Xie, J., Jiang, J., Shi, K., Zhang, T., Zhu, T., Chen, H., Chen, R., Qi, L., Ding, W., Yi, Q., and Ma, T. (2014) DNA damage in peripheral blood lymphocytes from patients with OSAHS, Sleep Breath., 18, 775–780.CrossRefPubMedGoogle Scholar
  37. 37.
    Garaj-Vrhovac, V., and Kopjar, N. (2000) Cytogenetic monitoring of cardiology unit hospital workers exposed to Doppler ultrasound, J. Appl. Toxicol., 20, 259–264.CrossRefPubMedGoogle Scholar
  38. 38.
    Udroiu, I., Domenici, F., Giliberti, C., Bedini, A., Palomba, R., Luongo, F., Pozzi, D., Bordi, F., and Castellano, A. C. (2014) Potential genotoxic effects of lowintensity ultrasound on fibroblasts, evaluated with the cytokinesis-block micronucleus assay, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 772, 20–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Duthie, S. J., Pirie, L., Jenkinson, A. M., and Narayanan, S. (2002) Cryopreserved versus freshly isolated lymphocytes in human biomonitoring: endogenous and induced DNA damage, antioxidant status and repair capability, Mutagenesis, 17, 211–214.PubMedGoogle Scholar
  40. 40.
    Hininger, I., Chollat-Namy, A., Sauvaigo, S., Osman, M., Faure, H., Cadet, J., Favier, A., and Roussel, A. M. (2004) Assessment of DNA damage by comet assay on frozen total blood: method and evaluation in smokers and non-smokers, Mutat. Res., 558, 75–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Visvardis, E. E., Tassiou, A. M., and Piperakis, S. M. (1997) Study of DNA damage induction and repair capacity of fresh and cryopreserved lymphocytes exposed to H2O2 and ?-irradiation with the alkaline comet assay, Mutat. Res., 383, 71–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Burrill, W., Levine, E. L., Hindocha, P., Roberts, S. A., and Scott, D. (2000) The use of cryopreserved lymphocytes in assessing inter-individual radiosensitivity with the micronucleus assay, Int. J. Radiat. Biol., 76, 375–382.CrossRefPubMedGoogle Scholar
  43. 43.
    Paoli, D., Lombardo, F., Lenzi, A., and Gandini, L. (2014) Sperm cryopreservation: effects on chromatin structure, Adv. Exp. Med. Biol., 791, 137–150.CrossRefPubMedGoogle Scholar
  44. 44.
    Ashwood-Smith, M. J., and Friedmann, G. B. (1979) Lethal and chromosomal effects of freezing, thawing, storage time, and X-irradiation on mammalian cells preserved at–196°C in dimethyl sulfoxide, Cryobiology, 16, 132–140.Google Scholar
  45. 45.
    Kloosterman, W. P., Hoogstraat, M., Paling, O., TavakoliYaraki, M., Renkens, I., Vermaat, J. S., Van Roosmalen, M. J., Van Lieshout, S., Nijman, I. J., Roessingh, W., Van’t Slot, R., Van de Belt, J., Guryev, V., Koudijs, M., Voest, E., and Cuppen, E. (2011) Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer, Genome Biol., 12, R103.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., Pleasance, E. D., Lau, K. W., Beare, D., Stebbings, L. A., McLaren, S., Lin, M. L., McBride, D. J., Varela, I., Nik-Zainal, S., Leroy, C., Jia, M., Menzies, A., Butler, A. P., Teague, J. W., Quail, M. A., Burton, J., Swerdlow, H., Carter, N. P., Morsberger, L. A., Iacobuzio-Donahue, C., Follows, G. A., Green, A. R., Flanagan, A. M., Stratton, M. R., Futreal, P. A., and Campbell, P. J. (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development, Cell, 144, 27–40.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shimizu, N., Shimura, T., and Tanaka, T. (2000) Selective elimination of acentric double minutes from cancer cells through the extrusion of micronuclei, Mutat. Res., 448, 8190.CrossRefGoogle Scholar
  48. 48.
    Shimizu, N., Misaka, N., and Utani, K. (2007) Nonselective DNA damage induced by a replication inhibitor results in the selective elimination of extrachromosomal double minutes from human cancer cells, Genes Chromosomes Cancer, 46, 865–874.CrossRefPubMedGoogle Scholar
  49. 49.
    Okamoto, A., Utani, K., and Shimizu, N. (2012) DNA replication occurs in all lamina positive micronuclei, but never in lamina negative micronuclei, Mutagenesis, 27, 323–327.PubMedGoogle Scholar
  50. 50.
    Shimizu, N. (2011) Molecular mechanisms of the origin of micronuclei from extrachromosomal elements, Mutagenesis, 26, 119–123.CrossRefPubMedGoogle Scholar
  51. 51.
    Medvedeva, N. G., Panyutin, I. V., Panyutin, I. G., and Neumann, R. D. (2007) Phosphorylation of histone H2AX in radiation-induced micronuclei, Radiat. Res., 168, 493498.CrossRefGoogle Scholar
  52. 52.
    Haaf, T., Raderschall, E., Reddy, G., Ward, D. C., Radding, C. M., and Golub, E. I. (1999) Sequestration of mammalian Rad51-recombination protein into micronuclei, J. Cell Biol., 144, 11–20.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Erenpreisa, J., Huna, A., Salmina, K., Jackson, T. R., and Cragg, M. S. (2012) Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate? Autophagy, 8, 1877–1881.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Terradas, M., Martin, M., Tusell, L., and Genesca, A. (2010) Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat. Res., 705, 60–67.CrossRefPubMedGoogle Scholar
  55. 55.
    Gernand, D., Rutten, T., Varshney, A., Rubtsova, M., Prodanovic, S., Bruss, C., Kumlehn, J., Matzk, F., and Houben, A. (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation, Plant Cell, 17, 2431–2438.PubMedGoogle Scholar
  56. 56.
    Gelot, C., Magdalou, I., and Lopez, B. S. (2015) Replication stress in mammalian cells and its consequences for mitosis, Genes (Basel), 6, 267–298.Google Scholar
  57. 57.
    Gieni, R. S., Chan, G., and Hendzel, M. J. (2008) Epigenetics regulate centromere formation and kinetochore function, J. Cell. Biochem., 104, 2027–2039.CrossRefPubMedGoogle Scholar
  58. 58.
    Bakhoum, S. F., and Compton, D. A. (2012) Kinetochores and disease: keeping microtubule dynamics in check! Curr. Opin. Cell Biol., 24, 64–70.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., Pan, Y., Nezi, L., Protopopov, A., Chowdhury, D., and Pellman, D. (2012) DNA breaks and chromosome pulverization from errors in mitosis, Nature, 482, 53–58.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Norppa, H., and Falck, G. C.-M. (2003) What do human micronuclei contain? Mutagenesis, 18, 221–233.CrossRefPubMedGoogle Scholar
  61. 61.
    Fenech, M. (2007) Cytokinesis-block micronucleus cytome assay, Nat. Protoc., 2, 1084–1104.CrossRefPubMedGoogle Scholar
  62. 62.
    Hoffelde, D. R., Luo, L., Burke, N. A., Watkins, S. C., Gollin, S. M., and Saunders, W. S. (2004) Resolution of anaphase bridges in cancer cells, Chromosoma, 112, 389–397.Google Scholar
  63. 63.
    Webster, M., Witkin, K. L., and Cohen-Fix, O. (2009) Sizing up the nucleus: nuclear shape, size and nuclearenvelope assembly, J. Cell Sci., 122, 1477–1486.CrossRefPubMedGoogle Scholar
  64. 64.
    Audhya, A., Desai, A., and Oegema, K. (2007) A role for Rab5 in structuring the endoplasmic reticulum, J. Cell Biol., 178, 43–56.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Galy, V., Antonin, W., Jaedicke, A., Sachse, M., Santarella, R., Haselmann, U., and Mattaj, I. (2008) A role for gp210 in mitotic nuclear-envelope breakdown, J. Cell Sci., 121, 317–328.CrossRefPubMedGoogle Scholar
  66. 66.
    Golden, A., Liu, J., and Cohen-Fix, O. (2009) Inactivation of the C. elegans homolog of lipin leads to endoplasmic reticulum disorganization and defects in nuclear envelope breakdown and reassembly, J. Cell Sci., 122, 1970–1978.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Meyerson, M., and Pellman, D. (2011) Cancer genomes evolve by pulverizing single chromosomes, Cell, 144, 9–10.CrossRefPubMedGoogle Scholar
  68. 68.
    Labidi, B., Gregoire, M., Frackowiak, S., HernandezVerdun, D., and Bouteille, M. (1987) RNA polymerase activity in PtK1 micronuclei containing individual chromosomes. An in vitro and in situ study, Exp. Cell Res., 169, 233–244.CrossRefPubMedGoogle Scholar
  69. 69.
    Phillips, S. G., and Phillips, D. M. (1969) Sites of nucleolus production in cultured Chinese hamster cells, J. Cell Biol., 40, 248–268.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Utani, K., Kohno, Y., Okamoto, A., and Shimizu, N. (2010) Emergence of micronuclei and their effects on the fate of cells under replication stress, PLoS One, 5, e10089.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Obe, G., Beek, B., and Vaidya, V. G. (1975) The human leukocyte test system. III. Premature chromosome condensation from chemically and X-ray induced micronuclei, Mutat. Res., 27, 89–101.CrossRefPubMedGoogle Scholar
  72. 72.
    Terradas, M., Martin, M., Hernandez, L., Tusell, L., and Genesca, A. (2012) Nuclear envelope defects impede a proper response to micronuclear DNA lesions, Mutat. Res., 729, 35–40.CrossRefPubMedGoogle Scholar
  73. 73.
    Yoshikawa, T., Kashino, G., Ono, K., and Watanabe, M. (2009) Phosphorylated H2AX foci in tumor cells have no correlation with their radiation sensitivities, J. Radiat. Res., 50, 151–160.CrossRefPubMedGoogle Scholar
  74. 74.
    Haaf, T., Raderschall, E., Reddy, G., Ward, D. C., Radding, C. M., and Golub, E. I. (1999) Sequestration of mammalian Rad51-recombination protein into micronuclei, J. Cell Biol., 144, 11–20.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Apraiz, A., Boyano, M. D., and Asumendi, A. (2011) Cellcentric view of apoptosis and apoptotic cell death-inducing antitumoral strategies, Cancers (Basel), 3, 1042–1080.CrossRefGoogle Scholar
  76. 76.
    Chumakov, P. M. (2007) Protein p53 and its universal functions in the multicellular organism, Usp. Biol. Khim., 47, 352.Google Scholar
  77. 77.
    Lauand, C., Niero, E. L., Dias, V. M., and MachadoSantelli, G. M. (2015) Cell cycle synchronization and BrdU incorporation as a tool to study the possible selective elimination of ErbB gene in the micronuclei in A549 cells, Braz. J. Med. Biol. Res., 48, 382–391.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tanaka, T., and Shimizu, N. (2000) Induced detachment of acentric chromatin from mitotic chromosomes leads to their cytoplasmic localization at G1 and the micronucleation by lamin reorganization at S phase, J. Cell Sci., 113, 697–707.PubMedGoogle Scholar
  79. 79.
    Shimizu, N., Nakamura, H., Kadota, T., Kitajima, K., Oda, T., Hirano, T., and Utiyama, H. (1994) Loss of amplified c-myc genes in the spontaneously differentiated HL-60 cells, Cancer Res., 54, 3561–3567.PubMedGoogle Scholar
  80. 80.
    Von Hoff, D. D., McGil, J. R., Forseth, B. J., Davidson, K. K., Bradley, T. P., Van Devanter, D. R., and Wahl, G. M. (1992) Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity, Proc. Natl. Acad. Sci. USA, 89, 8165–8169.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Canute, G. W., Longo, S. L., Longo, J. A., Shetler, M. M., Coyle, T. E., Winfield, J. A., and Hahn, P. J. (1998) The hydroxyurea-induced loss of double-minute chromosomes containing amplified epidermal growth factor receptor genes reduces the tumorigenicity and growth of human glioblastoma multiforme, Neurosurgery, 42, 609–616.CrossRefPubMedGoogle Scholar
  82. 82.
    Boya, P., and Codogno, P. (2012) Micronucleophagy: a new mechanism to protect against chromosomal instability? Cell Cycle, 11, 645–651.CrossRefPubMedGoogle Scholar
  83. 83.
    Rello-Varona, S., Lissa, D., Shen, S., Niso-Santano, M., Senovilla, L., Marino, G., Vitale, I., Jemaa, M., Harper, F., Pierron, G., Castedo, M., and Kroemer, G. (2012) Autophagic removal of micronuclei, Cell Cycle, 11, 170176.CrossRefGoogle Scholar
  84. 84.
    Sagona, A. P., Nezis, I. P., and Stenmark, H. (2014) Association of CHMP4B and autophagy with micronuclei: implications for cataract formation, Biomed. Res. Int., 974393.Google Scholar
  85. 85.
    Mijaljica, D., Prescott, M., and Devenish, R. J. (2010) The intricacy of nuclear membrane dynamics during nucleophagy, Nucleus, 1, 213–223.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Shimizu, N., Kamezaki, F., and Shigematsu, S. (2005) Tracking of microinjected DNA in live cells reveals the intracellular behavior and elimination of extrachromosomal genetic material, Nucleic Acids Res., 33, 6296–6307.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Onishchenko, G. E. (2007) Mitotic catastrophe as a variant of apoptosis, Estet. Med., 4, 283–293.Google Scholar
  88. 88.
    Edinger, A. L., and Thompson, C. B. (2004) Death by design: apoptosis, necrosis and autophagy, Curr. Opin. Cell Biol., 16, 663–669.CrossRefPubMedGoogle Scholar
  89. 89.
    Antonin, W., Ellenberg, J., and Dultz, E. (2008) Nuclear pore complex assembly through the cell cycle: regulation and membrane organization, FEBS Lett., 582, 2004–2016.CrossRefPubMedGoogle Scholar
  90. 90.
    Schooley, A., Vollmer, B., and Antonin, W. (2012) Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin decondensation, Chromosoma, 121, 539–554.Google Scholar
  91. 91.
    Haraguchi, T., Kojidani, T., Koujin, T., Shimi, T., Osakada, H., Mori, C., Yamamoto, A., and Hiraoka, Y. (2008) Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly, J. Cell Sci., 121, 2540–25544.CrossRefPubMedGoogle Scholar
  92. 92.
    Margalit, A., Segura-Totten, M., Gruenbaum, Y., and Wilson, K. L. (2005) Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina, PNAS, 102, 3290–3295.Google Scholar
  93. 93.
    Amendola, M., and Van Steensel, B. (2014) Mechanisms and dynamics of nuclear lamina–genome interactions, Curr. Opin. Cell Biol., 28, 61–68.CrossRefPubMedGoogle Scholar
  94. 94.
    Foster, H. A., Griffin, D. K., and Bridger, J. M. (2012) Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues, BMC Cell Biol., 13, 30.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Manvelyan, M., Hunstig, F., Mrasek, K., Bhatt, S., Pellestor, F., Weise, A., and Liehr, T. (2008) Position of chromosomes 18, 19. 21 and 22 in 3D-preserved interphase nuclei of human and gorilla and white hand gibbon, Mol. Cytogenet., 1, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Sun, H. B., Shen, J., and Yokota, H. (2000) Size-dependent positioning of human chromosomes in interphase nuclei, Biophys. J., 79, 184–190.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. P. Kisurina-Evgenieva
    • 1
  • O. I. Sutiagina
    • 1
  • G. E. Onishchenko
    • 1
  1. 1.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia

Personalised recommendations