Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 5, pp 445–452 | Cite as

Apoptosis in cryopreserved eukaryotic cells

  • M. A. SavitskayaEmail author
  • G. E. Onishchenko
Reviews

Abstract

This review considers apoptosis mechanisms that have been revealed in cryopreserved cells and which can be controlled using different chemical agents, thereby improving the viability of cells after their return to normal conditions. The role of oxidative stress as of the most significant damaging factor is discussed, as well as the reasonability of including antioxidants into cryopreservation/thawing protocols as independent agents or in combination with other compounds.

Keywords

apoptosis cryopreservation oxidative stress autophagy 

Abbreviations

DMSO

dimethyl sulfoxide

PARP

poly(ADP-ribose) polymerase

PS

phosphatidylserine

ROCK

Rho-associated protein kinase

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baust, J. G., Gao, D., and Baust, J. M. (2009) Cryopreservation. An emerging paradigm change, Organogenesis, 5, 90–96.PubMedGoogle Scholar
  2. 2.
    Uss, A. L., Mitskevich, P. B., and Zavgorodnaya, I. L. (2003) Cryopreservation of cells, Med. Panorama, 2, 38.Google Scholar
  3. 3.
    Xiao, Z., Wang, Y., Li, L. L., and Li, S. W. (2013) In vitro culture thawed human ovarian tissue: NIV versus slow freezing method, Cryo Lett., 34, 520–526.Google Scholar
  4. 4.
    Xiao, Z., Li, S. W., Zhang, Y. Y., Wang, Y., Li, L. L., and Fan, W. (2014) NIV versus dropping vitrification in cryopreservation of human ovarian tissue, Cryo Lett., 35, 226–231.Google Scholar
  5. 5.
    Kim, S., Lee, Y. J., and Kim, Y. J. (2011) Changes in sperm membrane and ROS following cryopreservation of liquid boar semen stored at 15°C, Anim. Reprod. Sci., 124, 118124.CrossRefGoogle Scholar
  6. 6.
    Fathi, R., Valojerdi, M. R., and Salehnia, M. (2013) Effects of different cryoprotectant combinations on primordial follicle survivability and apoptosis incidence after vitrification of whole rat ovary, Cryo Lett., 34, 228–238.Google Scholar
  7. 7.
    Rahimi, G., Isachenko, V., Todorov, P., Tawadros, S., Mallmann, P., Nawaroth, F., and Isachenko, E. (2009) Apoptosis in human ovarian tissue after conventional freezing or vitrification and xenotransplantation, Cryo Lett., 30, 300–309.Google Scholar
  8. 8.
    Bissoyi, A., Nayak, B., Pramanik, K., and Sarangi, S. K. (2014) Targeting cryopreservation-induced cell death: a review, Biopreserv. Biobank., 12, 23–34.CrossRefPubMedGoogle Scholar
  9. 9.
    Baust, J. M., Van Buskirk, R. G., and Baust, J. G. (1998) Cryopreservation outcome is enhanced by intracellulartype medium and inhibition of apoptosis, Cryobiology, 37, 410–411.Google Scholar
  10. 10.
    Liu, W. X., Luo, M. J., Huang, P., Wang, L., Zhao, C. Y., Yue, L. M., and Zheng, Y. (2007) Effects of removal of necrotic blastomeres from human cryopreserved embryos on pregnancy outcome, Cryo Lett., 28, 129–136.Google Scholar
  11. 11.
    Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26, 239257.CrossRefGoogle Scholar
  12. 12.
    Duru, N. K., Morshedi, M., Schuffner, A., and Oehninger, S. (2001) Cryopreservation-thawing of fractionated human spermatozoa and plasma membrane translocation of phosphatidylserine, Fertil. Steril., 75, 263–268.CrossRefPubMedGoogle Scholar
  13. 13.
    Anzar, M., He, L., Buhr, M. M., Kroetsch, T. G., and Pauls, K. P. (2002) Sperm apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and its relationship with fertility, Biol. Reprod., 66, 354–360.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim, S. H., Yu, D. H., and Kim, Y. J. (2010) Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm, Theriogenology, 73, 282–292.PubMedGoogle Scholar
  15. 15.
    Maurel, A., Azarnoush, K., Sabbah, L., Vignier, N., Le Lorch, M., Mandet, C., Bissery, A., Garcin, I., Carrion, C., Fiszman, M., Bruneval, P., Hagege, A., Carpentier, A., Vilquin, J. T., and Menasche, P. (2005) Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation, 80, 660–665.CrossRefPubMedGoogle Scholar
  16. 16.
    Ben Nasr, M., and Jenhani, F. (2008) A contribution to a study of apoptosis of hematopoietic stem cells CD34+ by flow cytometry before and after cryopreservation, Transfus. Clin. Biol., 15, 91–97.CrossRefPubMedGoogle Scholar
  17. 17.
    Men, H., Monson, R. L., Parrish, J. J., and Rutledge, J. J. (2003) Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture, Cryobiology, 47, 7381.CrossRefGoogle Scholar
  18. 18.
    Gallardo Bolanos, J. M., Miro Moran, A., Balao da Silva, C. M., Morillo Rodriguez, A., Plaza Davila, M., Aparicio, I. M., Tapia, J. A., Ortega Ferrusola, C., and Pena, F. J. (2012) Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration, PLoS One, 7, e30688.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schuurhuis, G. J., Muijen, M. M., Oberink, J. W., de Boer, F., Ossenkoppele, G. J., and Broxterman, H. J. (2001) Large populations of non-clonogenic early apoptotic CD34-positive cells are present in frozen-thawed peripheral blood stem cell transplants, Bone Marrow Transplant., 27, 4487–4498.CrossRefGoogle Scholar
  20. 20.
    De Boer, F., Drager, A. M., Pinedo, H. M., Kessler, F. L., Monnee-van Muijen, M., Weijers, G., Westra, G., Van der Wall, E., Netelenbos, T., Oberink, J. W., Huijgens, P. C., and Schuurhuis, G. J. (2002) Early apoptosis largely accounts for functional impairment of CD34+ cells in frozen-thawed stem cell grafts, J. Hematother. Stem Cell Res., 11, 951–963.CrossRefPubMedGoogle Scholar
  21. 21.
    Heng, B. C., Ye, C. P., Liu, H., Toh, W. S., Rufaihah, A. J., and Cao, T. (2006) Kinetics of cell death of frozen-thawed human embryonic stem cell colonies is reversibly slowed down by exposure to low temperature, Zygote, 14, 341–348.CrossRefPubMedGoogle Scholar
  22. 22.
    Xu, X., Cowley, S., Flaim, C. J., James, W., Seymour, L., and Cui, Z. (2010) The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells, Biotechnol. Prog., 26, 827837.CrossRefGoogle Scholar
  23. 23.
    Fu, T., Guo, D., Huang, X., O’Gorman, M. R., Huang, L., Crawford, S. E., and Soriano, H. E. (2001) Apoptosis occurs in isolated and banked primary mouse hepatocytes, Cell Transplant., 10, 59–66.PubMedGoogle Scholar
  24. 24.
    Liu, K., Yang, Y., and Mansbridge, J. (2000) Comparison of the stress response to cryopreservation in monolayer and three-dimensional human fibroblast cultures: stress proteins, MAP kinases, and growth factor gene expression, Tissue Eng., 6, 539–554.PubMedGoogle Scholar
  25. 25.
    Fowke, K. R., Behnke, J., Hanson, C., Shea, K., and Cosentino, L. M. (2000) Apoptosis: a method for evaluating the cryopreservation of whole blood and peripheral blood mononuclear cells, J. Immunol. Methods, 244, 139144.CrossRefGoogle Scholar
  26. 26.
    Xiao, M., and Dooley, D. C. (2003) Assessment of cell viability and apoptosis in human umbilical cord blood following storage, J. Hematother. Stem Cell Res., 12, 115–122.CrossRefPubMedGoogle Scholar
  27. 27.
    Cho, H. J., Lee, S. H., Yoo, J. J., and Shon, Y. H. (2014) Evaluation of cell viability and apoptosis in human amniotic fluid-derived stem cells with natural cryoprotectants, Cryobiology, 68, 244–250.CrossRefPubMedGoogle Scholar
  28. 28.
    Baust, J. M., Van Buskirk, R. G., and Baust, J. G. (2000) Cell viability improves following inhibition of cryopreservation-induced apoptosis, In vitro Cell. Dev. Biol. Anim., 36, 262–270.CrossRefPubMedGoogle Scholar
  29. 29.
    Mathew, A. J., Van Buskirk, R. G., and Baust, J. G. (2002) Improved hypothermic preservation of human renal cells through suppression of both apoptosis and necrosis, Cell Preserv. Technol., 1, 239–253.CrossRefGoogle Scholar
  30. 30.
    Sarkar, S., Kalia, V., and Montelaro, R. C. (2003) Caspasemediated apoptosis and cell death of rhesus macaque CD4+ T-cells due to cryopreservation of peripheral blood mononuclear cells can be rescued by cytokine treatment after thawing, Cryobiology, 47, 44–58.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim, S. H., Yu, D. H., and Kim, Y. J. (2010) Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm, Theriogenology, 73, 282–292.PubMedGoogle Scholar
  32. 32.
    Ben Nasr, M., and Jenhani, F. (2008) A contribution to a study of apoptosis of hematopoietic stem cells CD34+ by flow cytometry before and after cryopreservation, Transfusion Clin. Biol., 15, 91–97.CrossRefGoogle Scholar
  33. 33.
    Xiao, Z., Wang, Y., Li, L., and Li, S. W. (2010) Cryopreservation of the human ovarian tissue induces the expression of Fas system in morphologically normal primordial follicles, Cryo Lett., 31, 112–119.Google Scholar
  34. 34.
    Sasnoor, L. M., Kale, V. P., and Limaye, L. S. (2005) Prevention of apoptosis as a possible mechanism behind improved cryoprotection of hematopoietic cells by catalase and trehalose, Transplantation, 80, 1251–1260.CrossRefPubMedGoogle Scholar
  35. 35.
    Ichikawa, H., Nakata, N., Abo, Y., Shirasawa, S., Yokoyama, T., Yoshie, S., Yue, F., Tomotsune, D., and Sasaki, K. (2012) Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells, Cryobiology, 64, 12–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Gholami, M., Hemadi, M., Saki, G., Zendedel, A., Khodadadi, A., and Mohammadi-Asl, J. (2013) Does prepubertal testicular tissue vitrification influence spermatogonial stem cells (SSCs) viability? J. Assist. Reprod. Genet., 30, 1271–1277.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Suzanne, M., and Steller, H. (2013) Shaping organisms with apoptosis, Cell Death Differ., 20, 669–675.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhou, L. L., Lin, Z. X., Fung, K. P., Cheng, C. H., Che, C. T., Zhao, M., Wu, S. H., and Zuo, Z. (2011) Celastrolinduced apoptosis in human HaCaT keratinocytes involves the inhibition of NF-B activity, Eur. J. Pharmacol., 670, 399–408.CrossRefPubMedGoogle Scholar
  39. 39.
    Paasch, U., Sharma, R. K., Gupta, A. K., Grunewald, S., Mascha, E. J., Thomas, A. J., Jr., Glander, H. J., and Agarwal, A. (2004) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa, Biol. Reprod., 71, 1828–1837.CrossRefPubMedGoogle Scholar
  40. 40.
    Lang, K. S., Fillon, S., Schneider, D., Rammensee, H. G., and Lang, F. (2002) Stimulation of TNF alpha expression by hyperosmotic stress, Pflugers Arch., 443, 798–803.CrossRefPubMedGoogle Scholar
  41. 41.
    Reineher, R., and Haussinger, D. (2006) Hyperosmotic activation of the CD95 death receptor system, Acta Physiol., 187, 199–203.CrossRefGoogle Scholar
  42. 42.
    Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor-necrosis factor superfamily, Nat. Cancer Rev., 2, 420–430.CrossRefGoogle Scholar
  43. 43.
    Debatin, K. M., and Krammer, P. H. (2004) Death receptors in chemotherapy and cancer, Oncogene, 23, 2950–2966.CrossRefPubMedGoogle Scholar
  44. 44.
    Li, X., Meng, G., Krawetz, R., Liu, S., and Rancourt, D. E. (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation, Stem Cells Dev., 17, 1079–1085.CrossRefPubMedGoogle Scholar
  45. 45.
    Martin-Ibanez, R., Unger, C., Stromberg, A., Baker, D., Canals, J. M., and Hovatta, O. (2008) Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor, Hum. Reprod., 23, 27442754.CrossRefGoogle Scholar
  46. 46.
    Zeng, C., Tang, K., He, L., Peng, W., Ding, L., Fang, D., and Zhang, Y. (2014) Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation, Cryobiology, 68, 395–404.CrossRefPubMedGoogle Scholar
  47. 47.
    Stroh, C., Cassens, U., Samraj, A., Sibrowski, W., SchulzeOsthoff, K., and Los, M. (2002) The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells, FASEB J., 16, 1651–1653.PubMedGoogle Scholar
  48. 48.
    Ortega Ferrusola, C., Gonzalez Fernandez, L., Salazar Sandoval, C., Macias Garcia, B., Rodriguez Martinez, H., Tapia, J. A., and Pena, F. J. (2010) Inhibition of the mitochondrial permeability transition pore reduces “apoptosislike” changes during cryopreservation of stallion spermatozoa, Theriogenology, 74, 458–465.CrossRefPubMedGoogle Scholar
  49. 49.
    Martin, G., Sabido, O., Durand, P., and Levy, R. (2004) Cryopreservation induces an apoptosis-like mechanism in bull sperm, Biol. Reprod., 71, 28–37.CrossRefPubMedGoogle Scholar
  50. 50.
    Bissoyi, A., and Pramanik, K. (2014) Role of the apoptosis pathway in cryopreservation-induced cell death in mesenchymal stem cells derived from umbilical cord blood, Biopreserv. Biobank., 12, 246–254.CrossRefPubMedGoogle Scholar
  51. 51.
    Mazzilli, F., Rossi, T., Sabatini, L., Pulcinelli, F. M., Rapone, S., Dondero, F., and Gazzaniga, P. P. (1995) Human sperm cryopreservation and reactive oxygen species (ROS) production, Acta Eur. Fertil., 26, 145–148.PubMedGoogle Scholar
  52. 52.
    Chatterjee, S., and Gagnon, C. (2001) Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing, Mol. Reprod. Dev., 59, 451–458.CrossRefPubMedGoogle Scholar
  53. 53.
    Guthrie, H. D., and Welch, G. R. (2006) Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry, J. Anim. Sci., 84, 2089–2100.CrossRefPubMedGoogle Scholar
  54. 54.
    Bilodeau, J. F., Chatterjee, S., Sirard, M. A., and Gagnon, C. (2000) Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing, Mol. Reprod. Dev., 55, 282–288.CrossRefPubMedGoogle Scholar
  55. 55.
    Marti, E., Marti, J. I., Muino-Blanco, T., and CebrianPerez, J. A. (2008) Effect of the cryopreservation process on the activity and immunolocalization of antioxidant enzymes in ram spermatozoa, J. Androl., 29, 459–467.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang, J. M., Wang, H. C., Wang, H. X., Ruan, L. H., Zhang, Y. M., Li, J. T., Tian, S., and Zhang, Y. C. (2013) Oxidative stress and activities of caspase-8, -9, and -3 are involved in cryopreservation-induced apoptosis in granulosa cells, Eur. J. Obstet. Gynecol. Reprod. Biol., 166, 5255.Google Scholar
  57. 57.
    Zorov, D. B. (1996) Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these, Biochim. Biophys. Acta, 1275, 10–15.CrossRefPubMedGoogle Scholar
  58. 58.
    Bonora, M., and Pinton, P. (2014) The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death, Front. Oncol., 4, 302.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rodriguez-Martinez, H., Saravia, F., Wallgren, M., Roca, J., and Pena, F. J. (2008) Influence of seminal plasma on the kinematics of boar spermatozoa during freezing, Theriogenology, 70, 1242–1250.CrossRefPubMedGoogle Scholar
  60. 60.
    Koderle, M., Aurich, C., and Schafer-Somi, S. (2009) The influence of cryopreservation and seminal plasma on the chromatin structure of dog spermatozoa, Theriogenology, 72, 1215–1220.CrossRefPubMedGoogle Scholar
  61. 61.
    Tulcan, C., Cseh, S., Olariu, L., Chisu, I., Cernescu, H., Igna V., and Diaconescu, C. (2004) Antioxidant enzyme activity and lipoperoxygenation levels in dog seminal plasma, Vet. Clin. Pathol., 33, 273.Google Scholar
  62. 62.
    Strzezek, R., Koziorowska-Gilun, M., Kowalowka, M., and Strzezek, J. (2009) Characteristics of antioxidant system in dog semen, J. Vet. Sci., 12, 55–60.Google Scholar
  63. 63.
    Rosati, E., Sabatini, R., Rampino, G., de Falco, F., Di Ianni, M., Falzetti, F., Fettucciari, K., Bartoli, A., Screpanti, I., and Marconi, P. (2010) Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL, Blood, 116, 2713–2723.CrossRefPubMedGoogle Scholar
  64. 64.
    Karimfar, M. H., Niazvand, F., Haghani, K., Ghafourian, S., Shirazi, R., and Bakhtiyari, S. (2015) The protective effects of melatonin against cryopreservation-induced oxidative stress in human sperm, Int. J. Immunopathol. Pharmacol., 28, 69–76.CrossRefPubMedGoogle Scholar
  65. 65.
    De Almagro, M. C., and Vucic, D. (2015) Necroptosis: pathway diversity and characteristics, Semin. Cell Dev. Biol., 39, 56–62.Google Scholar
  66. 66.
    Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., and Tschopp J. (2000) Fas triggers an alternative, caspase-8independent cell death pathway using the kinase RIP as effector molecule, Nat. Immunol., 1, 489–495.PubMedGoogle Scholar
  67. 67.
    Edinger, A. L., and Thompson, C. B. (2004) Death by design: apoptosis, necrosis and autophagy, Curr. Opin. Cell Biol., 16, 663–669.CrossRefPubMedGoogle Scholar
  68. 68.
    Gozuacik, D., and Kimchi, A. (2004) Autophagy as a cell death and tumor suppressor mechanism, Oncogene, 23, 2891–2906.CrossRefPubMedGoogle Scholar
  69. 69.
    Levine, B., and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy, Dev. Cell, 6, 463–477.CrossRefPubMedGoogle Scholar
  70. 70.
    Parkhitko, A. A., Favorova, O. O., and Henske, E. P. (2013) Autophagy; mechanisms, regulation, and its role in tumorigenesis, Biochemistry (Moscow), 78, 355–367.Google Scholar
  71. 71.
    Lalaoui, N., Lindqvist, L. M., Sandow, J. J., and Ekert, P. G. (2015) The molecular relationships between apoptosis, autophagy and necroptosis, Semin. Cell Dev. Biol., 39, 6369.Google Scholar
  72. 72.
    Thomson, L. K., Fleming, S. D., Aitken, R. J., de Iuliis, G. N., Ziescha, J. A., Clark, A. M., Galluzzi, L., BravoSan Pedro, J. M., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Alnemri, E. S., Altucci, L., Andrews, D., Annicchiarico-Petruzzelli, M., Baehrecke, E. H., Bazan, N. G., Bertrand, M. J., Bianchi, K., Blagosklonny, M. V., Blomgren, K., Borner, C., Bredesen, D. E., Brenner, C., Campanella, M., Candi, E., Cecconi, F., Chan, F. K., Chandel, N. S., Cheng, E. H., Chipuk, J. E., Cidlowski, J. A., Ciechanover, A., Dawson, T. M., Dawson, V. L., de Laurenzi, V., de Maria, R., Debatin, K. M., Di Daniele, N., Dixit, V. M., Dynlacht, B. D., El-Deiry, W. S., Fimia, G. M., Flavell, R. A., Fulda, S., Garrido, C., Gougeon, M. L., Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., Ichijo, H., Joseph, B., Jost, P. J., Kaufmann, T., Kepp, O., Klionsky, D. J., Knight, R. A., Kumar, S., Lemasters, J. J., Levine, B., Linkermann, A., Lipton, S. A., Lockshin, R. A., LopezOtin, C., Lugli, E., Madeo, F., Malorni, W., Marine, J. C., Martin, S. J., Martinou, J. C., Medema, J. P., Meier, P., Melino, S., Mizushima, N., Moll, U., Munoz-Pinedo, C., Nunez, G., Oberst, A., Panaretakis, T., Penninger, J. M., Peter, M. E., Piacentini, M., Pinton, P., Prehn, J. H., Puthalakath, H., Rabinovich, G. A., Ravichandran, K. S., Rizzuto, R., Rodrigues, C. M., Rubinsztein, D. C., Rudel, T., Shi, Y., Simon, H. U., Stockwell, B. R., Szabadkai, G., Tait, S. W., Tang, H. L., Tavernarakis, N., Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger, A., Wagner, E. F., Walczak, H., White, E., Wood, W. G., Yuan, J., Zakeri, Z., Zhivotovsky, B., Melino, G., and Kroemer, G. (2014) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015, Cell Death Differ., 22, 58–73.Google Scholar
  73. 73.
    Zielonka, J., Gebicki, J., and Grynkiewicz, G. (2003) Radical scavenging properties of genistein, Free Radic. Biol. Med., 35, 958–965.CrossRefPubMedGoogle Scholar
  74. 74.
    Bennetts, L. E., de Iuliis, G. N., Nixon, B., Kime, M., Zelski, K., McVicar, C. M., Lewis, S. E., and Aitken, R. J. (2008) Impact of estrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities, Mutat. Res., 641, 1–11.CrossRefPubMedGoogle Scholar
  75. 75.
    Baumber, J., Ball, B. A., Gravance, C. G., Medina, V., and Davies-Morel, M. C. (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation, J. Androl., 21, 895–902.PubMedGoogle Scholar
  76. 76.
    Baumber, J., Ball, B. A., Linfor, J. J., and Meyers, S. A. (2003) Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa, J. Androl., 24, 621–628.CrossRefPubMedGoogle Scholar
  77. 77.
    Rizvi, S., Raza, S. T., Ahmed, F., Ahmad, A., Abbas, S., and Mahdi, F. (2014) The role of vitamin E in human health and some diseases, Sultan Qaboos Univ. Med. J., 14, 157–165.Google Scholar
  78. 78.
    Packer, L., Witt, E. H., and Tritschler, H. J. (1995) Alphalipoic acid as a biological antioxidant, Free Radic. Biol. Med., 19, 227–250.CrossRefPubMedGoogle Scholar
  79. 79.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N., Kapelko, V., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations