Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 4, pp 392–400 | Cite as

Interaction of chloramphenicol tripeptide analogs with ribosomes

  • A. G. Tereshchenkov
  • A. V. Shishkina
  • V. N. Tashlitsky
  • G. A. Korshunova
  • A. A. Bogdanov
  • N. V. SumbatyanEmail author
Article

Abstract

Chloramphenicol amine peptide derivatives containing tripeptide fragments of regulatory “stop peptides”–MRL, IRA, IWP–were synthesized. The ability of the compounds to form ribosomal complexes was studied by displacement of the fluorescent erythromycin analog from its complex with E. coli ribosomes. It was found that peptide chloramphenicol analogs are able to bind to bacterial ribosomes. The dissociation constants were 4.3-10 μM, which is 100-fold lower than the corresponding values for chloramphenicol amine–ribosome complex. Interaction of the chloramphenicol peptide analogs with ribosomes was simulated by molecular docking, and the most probable contacts of “stop peptide” motifs with the elements of nascent peptide exit tunnel were identified.

Keywords

ribosome “stop peptides” chloramphenicol peptide derivatives nascent peptide exit tunnel 

Abbreviations

Bhoc

N-benzhydryloxycarbonyl

Boc

tert-butyloxycarbonyl

BODIPY

(4,4-difluoro-4-bora-5,7-dimethyl)-3a,4a-diaza-s-indacene-3-pentanoic acid

Caeg

3-(2-aminoethyl)-3-[2-(cytosin-1-yl)acetyl]glycine

DCC

1,3-dicyclohexylcarbodiimide

DIPEA

diisopropylethylamine

Ery

erythromycin

Fmoc

fluorenylmethyloxycarbonyl

LCMS

liquid chromatography-mass spectrometry

PNA

peptide-nucleic acids

PTC

peptidyl transferase center

RT

ribosomal tunnel

TFA

trifluoroacetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2016_245_MOESM1_ESM.pdf (203 kb)
Supplementary material, approximately 204 KB.

References

  1. 1.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science, 289, 905–920.CrossRefPubMedGoogle Scholar
  2. 2.
    Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis, Science, 289, 920–930.CrossRefPubMedGoogle Scholar
  3. 3.
    Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) High-resolution structure of the large ribosomal subunit from a mesophilic eubacterium, Cell, 107, 679–688.CrossRefPubMedGoogle Scholar
  4. 4.
    Bogdanov, A. A., Sumbatyan, N. V., Shishkina, A. V., Karpenko, V. V., and Korshunova, G. A. (2010) Ribosomal tunnel and translation regulation, Biochemistry (Moscow), 75, 1501–1516.CrossRefGoogle Scholar
  5. 5.
    Kolb, V. A. (2010) Properties of intraribosomal part of nascent polypeptide, Biochemistry (Moscow), 75, 1517–1527.CrossRefGoogle Scholar
  6. 6.
    Wilson, D. N., and Beckman, R. (2011) The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling, Curr. Opin. Struct. Biol., 21, 274–282.CrossRefPubMedGoogle Scholar
  7. 7.
    Subramanian, S. L., Ramu, H., and Mankin, A. S. (2012) in Antibiotic Discovery and Development (Dougherty, T. J., and Pucci, M. J., eds.) Springer, pp. 455–484.Google Scholar
  8. 8.
    La Marre, J., Mendes, R. E., Szal, T., Schwarz, S., Jones, R. N., and Mankin, A. S. (2013) The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L, Antimicrob. Agents Chemother., 57, 1173–1179.CrossRefGoogle Scholar
  9. 9.
    Mankin, A. S. (2006) Nascent peptide in the “birth canal” of the ribosome, Trends Biochem. Sci., 31, 11–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Cruz-Vera, L. R., Sachs, M. S., Sguires, C. L., and Yanofsky, C. (2011) Nascent polypeptide sequences that influence ribosome function, Curr. Opin. Microbiol., 14, 160–166.CrossRefPubMedGoogle Scholar
  11. 11.
    Ito, K., and Chiba, S. (2013) Arrest peptides: cis-acting modulators of translation, Annu. Rev. Biochem., 82, 171–202.CrossRefPubMedGoogle Scholar
  12. 12.
    Arenz, S., Meydan, S., Starosta, A. L., Berninghausen, O., Beckmann, R., Vazquez-Laslop, N., and Wilson, D. N. (2014) Drug sensing by the ribosome induces translational arrest via active site perturbation, Mol. Cell, 56, 446–452.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Roy, R. N., Lomakin, I. B., Gagnon, M. G., and Steitz, T. A. (2015) The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin, Nat. Struct. Mol. Biol., 22, 466–469.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Seefeldt, A. C., Nguyen, F., Antunes, S., Perebaskine, N., Graf, M., Arenz, S., Inampudi, K. K., Douat, C., Guichard, G., Wilson, D. N., and Innis, C. A. (2015) The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex, Nat. Struct. Mol. Biol., 22, 470–475.CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit, J. Mol. Biol., 330, 1061–1075.CrossRefPubMedGoogle Scholar
  16. 16.
    Schlunzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A., and Franceschi, F. (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase center in eubacteria, Nature, 413, 814–821.CrossRefPubMedGoogle Scholar
  17. 17.
    Lu, J., Hua, Z., Kobertz, W. R., and Detsch, C. (2013) Nascent peptide side-chains induce rearrangements in distinct locations of the ribosomal tunnel, J. Mol. Biol., 411, 499–510.CrossRefGoogle Scholar
  18. 18.
    Woolstenhulme, C. J., Parajuli, S., Healey, D. W., Valverde, D. P., Petersen, E. N., Starosta, A. L., Guydosh, N. R., Johnson, W. E., Wilson, D. N., and Buskirk, A. R. (2013) Nascent peptides that block protein synthesis in bacteria, Proc. Natl. Acad. Sci. USA, 110, 878–887.CrossRefGoogle Scholar
  19. 19.
    Mamos, P., Krokidis, M. G., Papadas, A., Karahalios, P., Starosta, A. L., Wilson, D. N., Kalpaxis, D. L., and Dinos, G. P. (2013) On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel, Biochimie, 95, 1765–1772.CrossRefPubMedGoogle Scholar
  20. 20.
    Arenz, S., Ramu, H., Gupta, P., Berninghausen, O., Beckmann, R., Vazquez-Laslop, N., Mankin, A. S., and Wilson, D. N. (2014) Molecular basis for erythromycindependent ribosome stalling during translation of the ErmBL leader peptide, Nat. Commun., 5, 3501.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fischer, N., Neumann, P., Konevega, A. L., Bock, L. V., Ficner, R., Rodnina, M. V., and Stark, H. (2015) Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM, Nature, 520, 567–570.CrossRefPubMedGoogle Scholar
  22. 22.
    Sumbatyan, N. V., Korshunova, G. A., and Bogdanov, A. A. (2003) Peptide derivatives of antibiotics tylosin and desmycosin, protein synthesis inhibitors, Biochemistry (Moscow), 68, 1156–1158.CrossRefGoogle Scholar
  23. 23.
    Starosta, A. L., Karpenko, V. V., Shishkina, A. V., Mikolajka, A., Sumbatyan, N. V., Schluenzen, F., Korshunova, G. A., Bogdanov, A. A., and Wilson, D. N. (2010) Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition, Chem. Biol., 17, 504–514.CrossRefPubMedGoogle Scholar
  24. 24.
    Shishkina, A., Makarov, G., Tereshchenkov, A., Korshunova, G., Sumbatyan, N., Golovin, A., Svetlov, M., and Bogdanov, A. (2013) Conjugates of amino acids and peptides with 5-O-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel, Bioconj. Chem., 24, 1861–1869.CrossRefGoogle Scholar
  25. 25.
    Vazquez-Laslop, N., Ramu, H., and Mankin, A. (2011) in Ribosomes: Structure, Function and Dynamics (Rodnina, M. V., Wintermeyer, W., and Green, R., eds.) Springer, WienN.Y., pp. 377–392.Google Scholar
  26. 26.
    Gumbart, J., Schreiner, E., Wilson, D., Beckmann, R., and Schulten, K. (2012) Mechanism of SecM-mediated stalling in the ribosome, Biophys. J., 103, 331–341.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nielsen, P. E. (1998) Structural and biological properties of peptide nucleic acid (PNA), Pure Appl. Chem., 70, 105–110.CrossRefGoogle Scholar
  28. 28.
    Lundin, K. E., Good, L., Stromberg, R., Graslund, A., and Smith, C. I. E. (2006) in Advances in Genetics (Hall, J. C., ed.), vol. 56, Academic Press, Waltham, pp. 1–51.CrossRefGoogle Scholar
  29. 29.
    Good, L., and Nielsen, P. E. (1998) Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA, Proc. Natl. Acad. Sci. USA, 3, 2073–2076.CrossRefGoogle Scholar
  30. 30.
    Rebstock, M. C., Crooks, H. M., Controulis, J., and Bartz, Q. R. (1949) Chloramphenicol (Chloromycetin). IV. Chemical Studies, J. Am. Chem. Soc., 71, 2458–2462.CrossRefGoogle Scholar
  31. 31.
    Trott, O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455–461.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Dunkle, J. A., Xiong, L., Mankin A. S., and Cate, J. H. D. (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action, Proc. Natl. Acad. Sci. USA, 107, 17152–17157.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stewart, J. J. (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters, J. Mol. Model., 19, 1–32.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yan, K., Hunt, E., Berge, J., May, E., Copeland, R. A., and Gontarek, R. R. (2005) Fluorescence polarization method to characterize macrolide–ribosome interactions, Antimicrob. Agents Chemother., 49, 3367–3372.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang, Z. X. (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule, FEBS Lett., 360, 111–114.CrossRefPubMedGoogle Scholar
  36. 36.
    Shishkina, A. V., Tereshchenkov, A. G., Sumbatyan, N. V., Korshunova, G. A., and Bogdanov, A. A. (2013) Characterization of tylosin-related macrolides–ribosome interactions by fluorescence polarization method, FEBS J., 280 (Suppl. 1), 356.Google Scholar
  37. 37.
    Tereshchenkov, A., Sergeeva, V., Shishkina, A., Sumbatyan, N., and Bogdanov, A. (2014) in EMBO Conference Series: Chemical Biology 2014, Mera Druck GmbH, Sanghausen, pp. 263–263.Google Scholar
  38. 38.
    Tereshchenkov, A. G. (2013) in Kazan Summer School on Chemoinformatics, Innovation Publishing House “Butlerov Heritage”, Kazan, pp. 33–33.Google Scholar
  39. 39.
    Seidelt, B., Innis, C. A., Wilson, D. N., Gartmann, M., Armache, J.-P., Villa, E., Trabuco, L. G., Becker, T., Mielke, T., Schulten, K., Steitz, T. A., and Beckmann, R. (2009) Structural insight into nascent polypeptide chainmediated translational stalling, Science, 326, 1412–1415.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sohmen, D., Chiba, S., Shimokawa-Chiba, N., Innis, C. A., Berninghausen, O., Beckmann, R., Ito, K., and Wilson, D. N. (2015) Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling, Nat. Commun., 6, 6941.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. G. Tereshchenkov
    • 1
  • A. V. Shishkina
    • 2
  • V. N. Tashlitsky
    • 1
  • G. A. Korshunova
    • 2
  • A. A. Bogdanov
    • 1
    • 2
  • N. V. Sumbatyan
    • 1
    Email author
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations