Biochemistry (Moscow)

, Volume 81, Issue 4, pp 382–391 | Cite as

Analysis of extracellular vesicles using magnetic nanoparticles in blood of patients with acute coronary syndrome

  • M. S. Vagida
  • A. Arakelyan
  • A. M. LebedevaEmail author
  • J. Ch. Grivel
  • A. V. Shpektor
  • E. Yu. Vasilieva
  • L. B. Margolis


Extracellular vesicles (EVs) are released from various cell types and play an important role in intercellular interactions. In our study, we investigated abundance of individual EVs in patients with acute forms of ischemic heart disease. Previously, we developed an approach for individual analysis of EVs conjugated with magnetic nanoparticles (MNPs), which was applied in the current study for analyzing phenotypic composition of EVs (by staining for markers CD31, CD41a, and CD63). EVs were isolated using fluorescently labeled MNPs containing anti-CD31, CD41a, or CD63 antibodies and analyzed by combining fluorescently labeled anti-CD41a and CD63, CD31 and CD63, or CD41a and CD31 antibodies, respectively. EVs were analyzed in 30 individuals: 17 healthy volunteers and 13 patients with acute coronary syndrome (ACS). Six and seven ACS patients were with acute myocardial infarction and unstable angina, respectively. It was found that patients with ACS and healthy volunteers contained a dominant subset of EVs expressing surface CD41a antigen, suggesting that they originated from platelets. In addition, the total number of EVs isolated using either of the surface markers examined in our study was higher in patients with ACS compared to healthy volunteers. The subgroup of patients with acute myocardial infarction was found to contain significantly higher number of blood EVs compared to the control group. Moreover, increased number of EVs in patients with ACS is mainly due to the increased number of EVs in the subset of EVs bearing CD41a. By analyzing individual EVs, we found that plasma of patients with ACS, particularly upon developing of myocardial infarction, contained dominant platelet-derived EVs fraction, which may reflect activation of platelets in such patients.


extracellular vesicles platelets acute coronary syndrome flow cytometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ong, S.-G., Lee, W. H., Huang, M., Dey, D., Kodo, K., Sanchez-Freire, V., Gold, J. D., and Wu, J. C. (2014) Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer, Circulation, 130, S60–S69.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., and Mi, S. (2015) Exosome and exosomal microRNA: trafficking, sorting, and function, Genom. Proteom. Bioinform., 13, 17–24.CrossRefGoogle Scholar
  3. 3.
    Yuana, Y., Sturk, A., and Nieuwland, R. (2013) Extracellular vesicles in physiological and pathological conditions, Blood Rev., 27, 31–39.CrossRefPubMedGoogle Scholar
  4. 4.
    Record, M., Carayon, K., Poirot, M., and Silvente-Poirot, S. (2014) Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies, Biochim. Biophys. Acta, 1841, 108–120.CrossRefPubMedGoogle Scholar
  5. 5.
    Rautou, P. E., Vion, A. C., Amabile, N., Chironi, G., Simon, A., Tedgui, A., and Boulanger, C. M. (2011) Microparticles, vascular function, and atherothrombosis, Circ. Res., 109, 593–606.CrossRefPubMedGoogle Scholar
  6. 6.
    Ayers, L., Harrison, P., Kohler, M., and Ferry, B. (2014) Procoagulant and platelet-derived microvesicle absolute counts determined by flow cytometry correlates with a measurement of their functional capacity, J. Extracell. Vesicles, doi: 10.3402/jev.v3.25348.Google Scholar
  7. 7.
    Lacroix, R., Dubois, C., Leroyer, A. S., Sabatier, F., and Dignat-George, F. (2013) Revisited role of microparticles in arterial and venous thrombosis, J. Thromb. Haemost., 11 (Suppl. 1), 24–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Leroyer, A. S., Tedgui, A., and Boulanger, C. M. (2008) Role of microparticles in atherothrombosis, J. Intern. Med., 263, 528–537.CrossRefPubMedGoogle Scholar
  9. 9.
    Nomura, S., and Shimizu, M. (2015) Clinical significance of procoagulant microparticles, J. Intens. Care, 3, 2.CrossRefGoogle Scholar
  10. 10.
    De Toro, J., Herschlik, L., Waldner, C., and Mongini, C. (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications, Front. Immunol., 6, 203.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zocco, D., Ferruzzi, P., Cappello, F., Kuo, W. P., and Fais, S. (2014) Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs, Front. Oncol., 4, 267.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Colombo, M., Moita, C., Van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L. F., Thery, C., and Raposo, G. (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles, J. Cell Sci., 126, 5553–5565.CrossRefPubMedGoogle Scholar
  13. 13.
    Besancenot, R., Chaligne, R., Tonetti, C., Pasquier, F., Marty, C., Lecluse, Y., Vainchenker, W., Constantinescu, S. N., and Giraudier, S. (2010) A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation, PLoS Biol., 8.Google Scholar
  14. 14.
    Aatonen, M. T., Ohman, T., Nyman, T. A., Laitinen, S., Gronholm, M., and Siljander, P. R. (2014) Isolation and characterization of platelet-derived extracellular vesicles, J. Extracell. Vesicles, 3, 1–15.Google Scholar
  15. 15.
    Amabile, N., Cheng, S., Renard, J. M., Larson, M. G., Ghorbani, A., Mc Cabe, E., Griffin, G., Guerin, C., Ho, J. E., Shaw, S. Y., Cohen, K. S., Vasan, R. S., Tedgui, A., Boulanger, C. M., and Wang, T. J. (2014) Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study, Eur. Heart J., 1-8.Google Scholar
  16. 16.
    Li, P., and Qin, C. (2015) Elevated circulating VE-cadherin+ CD144+ endothelial microparticles in ischemic cerebrovascular disease, Thromb. Res., 135, 375–381.CrossRefPubMedGoogle Scholar
  17. 17.
    Hu, S.-S., Zhang, H.-G., Zhang, Q.-J., and Xiu, R.-J. (2014) Small-size circulating endothelial microparticles in coronary artery disease, PLoS One, 9, e104528.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jung, C., Sorensson, P., Saleh, N., Arheden, H., Ryden, L., and Pernow, J. (2012) Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction, Atherosclerosis, 221, 226–231.CrossRefPubMedGoogle Scholar
  19. 19.
    Gyorgy, B., Szabo, T. G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., Laszlo, V., Pallinger, E., Pap, E., Kittel, A., Nagy, G., Falus, A., and Buzas, E. I. (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci., 68, 2667–2688.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stepien, E., Stankiewicz, E., Zalewski, J., Godlewski, J., Zmudka, K., and Wybranska, I. (2012) Number of microparticles generated during acute myocardial infarction and stable angina correlates with platelet activation, Arch. Med. Res., 43, 31–35.CrossRefPubMedGoogle Scholar
  21. 21.
    Skeppholm, M., Mobarrez, F., Malmqvist, K., and Wallen, H. (2012) Platelet-derived microparticles during and after acute coronary syndrome, Thromb. Haemost., 107, 1122–1129.CrossRefPubMedGoogle Scholar
  22. 22.
    Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., White, H. D., (2012) Third universal definition of myocardial infarction, J. Am. Coll. Cardiol., 60, 1581–1598.CrossRefPubMedGoogle Scholar
  23. 23.
    Van der Pol, E., Coumans, F. A. W., Grootemaat, A. E., Gardiner, C., Sargent, I. L., Harrison, P., Sturk, A., Van Leeuwen, T. G., and Nieuwland, R. (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing, J. Thromb. Haemost., 12, 1182–1192.CrossRefPubMedGoogle Scholar
  24. 24.
    Witwer, K. W., Buzas, E. I., Bemis, L. T., Bora, A., Lasser, C., Lotvall, J., Nolte’t-Hoen, E. N., Piper, M. G., Sivaraman, S., Skog, J., Thery, C., Wauben, M. H., and Hochberg, F. (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research, J. Extracell. Vesicles, 2.Google Scholar
  25. 25.
    Steg, P. G., James, S. K., Atar, D., Badano, L. P., Blomstrom-Lundqvist, C., Borger, M. A., Di Mario, C., Dickstein, K., Ducrocq, G., Fernandez-Aviles, F., Gershlick, A. H., Giannuzzi, P., Halvorsen, S., Huber, K., Juni, P., Kastrati, A., Knuuti, J., Lenzen, M. J., Mahaffey, K. W., Valgimigli, M., Van’t Hof, A., Widimsky, P., and Zahger, D. (2012) ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation, Eur. Heart J., 33, 2569–2619.CrossRefPubMedGoogle Scholar
  26. 26.
    Hamm, C. W., Bassand, J.-P., Agewall, S., Bax, J., Boersma, E., Bueno, H., Caso, P., Dudek, D., Gielen, S., Huber, K., Ohman, M., Petrie, M. C., Sonntag, F., Uva, M. S., Storey, R. F., Wijns, W., and Zahger, D. (2011) ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevatio, Eur. Heart J., 32, 2999–3054.CrossRefPubMedGoogle Scholar
  27. 27.
    Arakelyan, A., Ivanova, O., Vasilieva, E., Grivel, J.-C., and Margolis, L. (2015) Antigenic composition of single nanosized extracellular blood vesicles, Nanomedicine, 11, 489–498.PubMedGoogle Scholar
  28. 28.
    Arakelyan, A., Fitzgerald, W., Margolis, L., and Grivel, J. (2013) Nanoparticle-based flow virometry for the analysis of individual virions, J. Clin. Invest., 123, 3716–3727.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Campbell, E. C., Antoniou, A. N., and Powis, S. J. (2012) The multi-faceted nature of HLA class I dimer molecules, Immunology, 136, 380–384.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Andre, F., Chaput, N., Schartz, N. E. C., Flament, C., Aubert, N., Bernard, J., Lemonnier, F., Raposo, G., Escudier, B., Hsu, D.-H., Tursz, T., Amigorena, S., Angevin, E., and Zitvogel, L. (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells, J. Immunol., 172, 2126–2136.CrossRefPubMedGoogle Scholar
  31. 31.
    Lynch, S., Santos, S. G., Campbell, E. C., Nimmo, A. M. S., Botting, C., Prescott, A., Antoniou, A. N., and Powis, S. J. (2009) Novel MHC class I structures on exosomes, J. Immunol., 183, 1884–1891.CrossRefPubMedGoogle Scholar
  32. 32.
    Thery, C. (2011) Exosomes: secreted vesicles and intercellular communications, F1000 Biol. Rep., 3, 15.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Biasucci, L. M., Porto, I., Di Vito, L., De Maria, G. L., Leone, A. M., Tinelli, G., Tritarelli, A., Di Rocco, G., Snider, F., Capogrossi, M. C., and Crea, F. (2012) Differences in microparticle release in patients with acute coronary syndrome and stable angina, Circ. J., 76, 2174–2182.CrossRefPubMedGoogle Scholar
  34. 34.
    Kafian, S., Mobarrez, F., Wallen, H., and Samad, B. (2014) Association between platelet reactivity and circulating platelet-derived microvesicles in patients with acute coronary syndrome, Platelets, 7104, 1–7.Google Scholar
  35. 35.
    Morel, O., Pereira, B., Averous, G., Faure, A., Jesel, L., Germain, P., Grunebaum, L., Ohlmann, P., Freyssinet, J. M., Bareiss, P., and Toti, F. (2009) Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation, Atherosclerosis, 204, 636–641.CrossRefPubMedGoogle Scholar
  36. 36.
    Lovren, F., and Verma, S. (2013) Evolving role of microparticles in the pathophysiology of endothelial dysfunction, Clin. Chem., 59, 1166–1174.CrossRefPubMedGoogle Scholar
  37. 37.
    Helbing, T. (2014) Role of microparticles in endothelial dysfunction and arterial hypertension, World J. Cardiol., 6, 1135.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bobrie, A., Colombo, M., Krumeich, S., Raposo, G., and Thery, C. (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation, J. Extracell. Vesicles, 1, 1–11.Google Scholar
  39. 39.
    Metzelaar, M. J., Wijngaard, P. L. J., Peters, P. J., Sixma, J. J., Nieuwenhuis, H. K., and Clevers, H. C. (1991) CD63 antigen: a novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells, J. Biol. Chem., 266, 3239–3245.PubMedGoogle Scholar
  40. 40.
    Piccin, A., Murphy, W. G., and Smith, O. P. (2007) Circulating microparticles: pathophysiology and clinical implications, Blood Rev., 21, 157–171.CrossRefPubMedGoogle Scholar
  41. 41.
    Antwi-Baffour, S., Adjei, J., Aryeh, C., Kyeremeh, R., Kyei, F., and Seidu, M. A. (2015) Understanding the biosynthesis of platelets-derived extracellular vesicles, Immun. Inflamm. Dis., 3, 133–140.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Min, P.-K., Kim, J.-Y., Chung, K.-H., Lee, B. K., Cho, M., Lee, D.-L., Hong, S.-Y., Choi, E.-Y., Yoon, Y.-W., Hong, B.-K., Rim, S.-J., and Kwon, H. M. (2013) Local increase in microparticles from the aspirate of culprit coronary arteries in patients with ST-segment elevation myocardial infarction, Atherosclerosis, 227, 323–328.CrossRefPubMedGoogle Scholar
  43. 43.
    Patrono, C., and Renda, G. (1997) Platelet activation and inhibition in unstable coronary syndromes, Am. J. Cardiol., 80, 17–20.CrossRefGoogle Scholar
  44. 44.
    Harker, L. A., and Ritchie, J. L. (1980) The role of platelets in acute vascular events, Circulation, 62, 13–18.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. S. Vagida
    • 1
  • A. Arakelyan
    • 2
  • A. M. Lebedeva
    • 1
    Email author
  • J. Ch. Grivel
    • 2
  • A. V. Shpektor
    • 1
  • E. Yu. Vasilieva
    • 1
  • L. B. Margolis
    • 2
  1. 1.Moscow State University of Medicine and DentistryLaboratory of AtherothrombosisMoscowRussia
  2. 2.Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesda, MarylandUSA

Personalised recommendations