Biochemistry (Moscow)

, Volume 81, Issue 4, pp 348–363 | Cite as

Molecular mechanisms of autophagy in plants: Role of ATG8 proteins in formation and functioning of autophagosomes

  • V. V. Ryabovol
  • F. V. MinibayevaEmail author


Autophagy is an efficient way of degradation and removal of unwanted or damaged intracellular components in plant cells. It plays an important role in recycling of intracellular structures (during starvation, removal of cell components formed during plant development or damaged by various stress factors) and in programmed cell death. Morphologically, autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which are essential for the isolation and degradation of cytoplasmic components. Among autophagic (ATG) proteins, ATG8 from the ubiquitinlike protein family plays a key role in autophagosome formation. ATG8 is also involved in selective autophagy, fusion of autophagosome with the vacuole, and some other intracellular processes not associated with autophagy. In contrast to yeasts that carry a single ATG8 gene, plants have multigene ATG8 families. The reason for such great ATG8 diversity in plants remains unclear. It is also unknown whether all members of the ATG8 family are involved in the formation and functioning of autophagosomes. To answer these questions, the identification of the structure and the possible functions of plant proteins from ATG8 family is required. In this review, we analyze the structures of ATG8 proteins from plants and their homologs from yeast and animal cells, interactions of ATG8 proteins with functional ligands, and involvement of ATG8 proteins in different metabolic processes in eukaryotes.


autophagy autophagosome ATG8 plants stress 



ATG8-interacting motif

ATG genes and proteins

autophagic gene and proteins


ATG8-interacting proteins 1 and 2

CVT pathway

cytoplasm-to-vacuole targeting pathway


endoplasmic reticulum


γ-aminobutyric acid A receptor-associated protein


Golgi-associated ATPase enhancer 16 kDa


pre-autophagosomal structure




phosphatidylinositol 3-phosphate

PI3K 1

phosphatidylinositol 3-kinase complex 1


reactive oxygen species


target of rapamycin protein kinase




ubiquitin-like protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xie, Z., and Klionsky, D. J. (2007) Autophagosome formation: core machinery and adaptations, Nat. Cell Biol., 9, 1102–1109.PubMedCrossRefGoogle Scholar
  2. 2.
    Tsukada, M., and Ohsumi, Y. (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae, FEBS Lett., 333, 169–174.PubMedCrossRefGoogle Scholar
  3. 3.
    Huang, J., and Klionsky, D. J. (2007) Autophagy and human disease, Cell Cycle, 6, 1837–1849.PubMedCrossRefGoogle Scholar
  4. 4.
    Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Elazar, Z. (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4, EMBO J., 26, 1749–1760.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011) The role of Atg proteins in autophagosome formation, Annu. Rev. Cell Dev. Biol., 27, 107–132.PubMedCrossRefGoogle Scholar
  6. 6.
    Slavikova, S., Ufaz, S., Avin-Wittenberg, T., Levanony, H., and Galili, G. (2008) An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses, J. Exp. Bot., 59, 4029–4043.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Liu, Y., Xiong, Y., and Bassham, D. C. (2009) Autophagy is required for tolerance of drought and salt stress in plants, Autophagy, 5, 954–963.PubMedCrossRefGoogle Scholar
  8. 8.
    Hayward, A. P., and Dinesh-Kumar, S. P. (2010) What can plant autophagy do for an innate immune response? Annu. Rev. Phytopathol., 49, 4.1-4.20.Google Scholar
  9. 9.
    Vanhee, C., Zapotoczny, G., Masquelier, D., Ghislain, M., and Batoko, H. (2011) The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagydependent degradation mechanism, Plant Cell, 23, 785–805.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Azad, A. K., Ishikawa, T., Ishikawa, T., Sawa, Y., and Shibata, H. (2008) Intracellular energy depletion triggers programmed cell death during petal senescence in tulip, J. Exp. Bot., 59, 2085–2095.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Minibayeva, F., Dmitrieva, S., Ponomareva, A., and Ryabovol, V. (2012) Oxidative stress-induced autophagy in plants: the role of mitochondria, Plant Physiol. Biochem., 59, 11–19.PubMedCrossRefGoogle Scholar
  12. 12.
    Levanony, H., Rubin, R., Altschuler, Y., and Galili, G. (1992) Evidence for a novel route of wheat storage proteins to vacuoles, J. Cell Biol., 119, 1117–1128.PubMedCrossRefGoogle Scholar
  13. 13.
    Shy, G., Ehler, L., Herman, E., and Galili, G. (2001) Expression patterns of genes encoding endomembrane proteins support a reduced function of the Golgi in wheat endosperm during the onset of storage protein deposition, J. Exp. Bot., 52, 2387–2388.PubMedCrossRefGoogle Scholar
  14. 14.
    Backhaus, R. A., and Walsh, S. (1983) The ontogeny of rubber formation in guayule, Parthenium argentatum gray, Bot. Gazette, 144, 391–400.CrossRefGoogle Scholar
  15. 15.
    Van der Wilden, W., Herman, E. M., and Chrispeels, M. J. (1980) Protein bodies of mung bean cotyledons as autophagic organelles, Proc. Natl. Acad. Sci. USA, 77, 428–432.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Toyooka, K., Okamoto, T., and Minamikawa, T. (2001) Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components, J. Cell Biol., 154, 973–982.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bassham, D. C. (2007) Plant autophagy–more than a starvation response, Curr. Opin. Plant Biol., 10, 587–593.PubMedCrossRefGoogle Scholar
  18. 18.
    Ishihara, N., Hamasaki, M., Yokota, S., Suzuki, K., Kamada, Y., Kihara, A., Yoshimori, T., Noda, T., and Ohsumi, Y. (2001) Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion, Mol. Biol. Cell, 12, 3690–3702.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Reggiori, F., Wang, C. W., Nair, U., Shintani, T., Abeliovich, H., and Klionsky, D. J. (2004) Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae, Mol. Biol. Cell, 15, 2189–2204.PubMedGoogle Scholar
  20. 20.
    Hamasaki, M., and Yoshimori, T. (2010) Where do they come from? Insights into autophagosome formation, FEBS Lett., 584, 1296–1301.PubMedCrossRefGoogle Scholar
  21. 21.
    Le Bars, R., Marion, J., Satiat-Jeunemaitre, B., and Bianchi, M. W. (2014) Folding into an autophagosome: ATG5 sheds light on how plants do it, Autophagy, 10, 1861–1863.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Avin-Wittenberg, T., Honig, A., and Galili, G. (2012) Variations on a theme: plant autophagy in comparison to yeast and mammals, Protoplasma, 249, 285–299.PubMedCrossRefGoogle Scholar
  23. 23.
    Xia, K., Liu, T., Ouyang, J., Wang, R., Fan, T., and Zhang, M. (2011) Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.), DNA Res., 18, 363–377.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bassham, D. C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L. J., and Yoshimoto, K. (2006) Autophagy in development and stress responses of plants, Autophagy, 2, 2–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki, K., Kamada, Y., and Ohsumi, Y. (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast, Nat. Rev. Mol. Cell Biol., 10, 458–467.PubMedCrossRefGoogle Scholar
  26. 26.
    Farre, J. C., Krick, R., Subramani, S., and Thumm, M. (2009) Turnover of organelles by autophagy in yeast, Curr. Opin. Cell Biol., 21, 522–530.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Suzuki, K., and Ohsumi, Y. (2010) Current knowledge of the preautophagosomal structure (PAS), FEBS Lett., 584, 1280–1286.PubMedCrossRefGoogle Scholar
  28. 28.
    Tanida, I. (2011) Autophagosome formation and molecular mechanism of autophagy, Antioxid. Redox Signal., 14, 2201–2214.PubMedCrossRefGoogle Scholar
  29. 29.
    Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene, Plant Physiol., 129, 1181–1193.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Schmelzle, T., and Hall, M. N. (2000) TOR, a central controller of cell growth, Cell, 103, 253–262.PubMedCrossRefGoogle Scholar
  31. 31.
    Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex, J. Cell Biol., 150, 1507–1513.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Li, F., and Vierstra, R. D. (2012) Autophagy: multifaceted intracellular system for bulk and selective recycling, Trends Plant Sci., 17, 526–537.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu, Y., and Bassham, D. C. (2010) TOR is a negative regulator of autophagy in Arabidopsis thaliana, PLoS One, 5, e11883.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bassham, D. C. (2009) Function and regulation of macroautophagy in plants, Biochim. Biophys. Acta, 1793, 1397–1403.PubMedCrossRefGoogle Scholar
  35. 35.
    Suttangkakul, A., Li, F., Chung, T., and Vierstra, R. D. (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis, Plant Cell, 23, 3761–3779.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yen, W. L., Legakis, J. E., Nair, U., and Klionsky, D. J. (2006) Atg27 is required for autophagydependent cycling of Atg9, Mol. Biol. Cell, 18, 581–593.PubMedCrossRefGoogle Scholar
  37. 37.
    Legakis, J. E., Yen, W. L., and Klionsky, D. J. (2007) A cycling protein complex required for selective autophagy, Autophagy, 3, 422–432.PubMedCrossRefGoogle Scholar
  38. 38.
    Reggiori, F., Tucker, K. A., Stromhaug, P. E., and Klionsky, D. J. (2004) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure, Dev. Cell, 6, 79–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Dove, S. K., Piper, R. C., Mc Ewen, R. K., Yu, J. W., King, M. C., Hughes, D. C., Thuring, J., Holmes, A. B., Cooke, F. T., Michell, R. H., Parker, P. J., and Lemmon, M. A. (2004) Svp1p defines a family of phosphatidylinositol 3,5bisphosphate effectors, EMBO J., 23, 1922–1933.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shin, K. D., Lee, H. N., and Chung, T. (2014) A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy, Mol. Cells, 37, 399–405.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae, J. Biol. Chem., 152, 519–530.Google Scholar
  42. 42.
    Obara, K., and Ohsumi, Y. (2008) Dynamics and function of PtdIns(3)P in autophagy, Autophagy, 4, 952–954.PubMedCrossRefGoogle Scholar
  43. 43.
    Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, 402, 672–676.PubMedCrossRefGoogle Scholar
  44. 44.
    Itakura, E., Kishi, C., Inoue, K., and Mizushima, N. (2008) Beclin 1 forms two distinct phosphatidylinositol 3kinase complexes with mammalian Atg14 and UVRAG, Mol. Biol. Cell, 19, 5360–5372.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    He, C., and Levine, B. (2010) The Beclin 1 interactome, Curr. Opin. Cell Biol., 22, 140–149.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Patel, S., and Dinesh-Kumar, S. P. (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response, Autophagy, 4, 20–27.PubMedCrossRefGoogle Scholar
  47. 47.
    Vergne, I., Roberts, E., Elmaoued, R. A., Tosch, V., Delgado, M. A., Proikas-Cezanne, T., Laporte, J., and Deretic, V. (2009) Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy, EMBO J., 28, 2244–2258.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Taguchi-Atarashi, N., Hamasaki, M., Matsunaga, K., Omori, H., Ktistakis, N. T., Yoshimori, T., and Noda, T. (2010) Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy, Traffic, 4, 468–478.CrossRefGoogle Scholar
  49. 49.
    Phillips, A. R., Suttangkakul, A., and Vierstra, R. D. (2008) The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana, Genetics, 178, 1339–1353.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells, J. Cell Biol., 152, 657–668.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Geng, J., Baba, M., Nair, U., and Klionsky, D. J. (2008) Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy, J. Cell Biol., 182, 129–140.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Su, W., Ma, H., Liu, C., Wu, J., and Yang, J. (2006) Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4, Mol. Biol. Rep., 33, 273–278.PubMedCrossRefGoogle Scholar
  53. 53.
    Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., and Ohsumi, Y. (2000) A ubiquitin-like system mediates protein lipidation, Nature, 408, 488–492.PubMedCrossRefGoogle Scholar
  54. 54.
    Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T., and Ohsumi, Y. (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast, J. Cell Biol., 147, 435–446.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J., 19, 5720–5728.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yu, Z. Q., Ni, T., Hong, B., Wang, H. Y., Jiang, F. J., Zou, S., Chen, Y., Zheng, X. L., Klionsky, D. J., Liang, Y., and Xie, Z. (2012) Dual roles of Atg8-PE deconjugation by Atg4 in autophagy, Autophagy, 8, 883–892.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., and Ohsumi, Y. (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation, EMBO J., 20, 5971–5781.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nakatogawa, H., Ichimura, Y., and Ohsumi, Y. (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion, Cell, 130, 165–178.PubMedCrossRefGoogle Scholar
  59. 59.
    Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007) The ATG12–ATG5 conjugate has a novel E3-like activity for protein lipidation in autophagy, J. Biol. Chem., 282, 37298–37302.PubMedCrossRefGoogle Scholar
  60. 60.
    Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T., and Yoshimori, T. (2008) Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy, Mol. Biol. Cell, 19, 2092–2100.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yang, Z., and Klionsky, D. J. (2009) An overview of the molecular mechanism of autophagy, Curr. Top. Microbiol. Immunol., 335, 1–32.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Noda, N. N., Ohsumi, Y., and Inagaki, F. (2010) Atg8family interacting motif crucial for selective autophagy, FEBS Lett., 584, 1379–1385.PubMedCrossRefGoogle Scholar
  63. 63.
    Gutierrez, M. G., Munafo, D. B., Beron, W., and Colombo, J. (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells, J. Cell Sci., 117, 2687–2697.PubMedCrossRefGoogle Scholar
  64. 64.
    Pankiv, S., Alemu, E. A., Brech, A., Bruun, J. A., Lamark, T., Overvatn, A., Bjorkoy, G., and Johansen, T. (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport, J. Cell Biol., 188, 253–269.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fader, C. M., Sanchez, D. G., Mestre, M. B., and Colombo, M. I. (2009) TI-VAMP/VAMP7 and VAMP3/ cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways, Biochim. Biophys. Acta, 1793, 1901–1916.PubMedCrossRefGoogle Scholar
  66. 66.
    Furuta, N., Fujita, N., Noda, T., Yoshimori, T., and Amano, A. (2010) Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes, Mol. Biol. Cell, 21, 1001–1010.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Darsow, T., Rieder, S. E., and Emr, S. D. (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole, J. Cell Biol., 38, 517–529.CrossRefGoogle Scholar
  68. 68.
    Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., Akira, S., Noda, T., and Yoshimori, T. (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages, Nat. Cell Biol., 11, 385–396.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhong, Y., Wang, Q. J., Li, X., Yan, Y., Backer, J. M., Chait, B. T., Heintz, N., and Yue, Z. (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex, Nat. Cell Biol., 11, 468–476.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., and Elazar, Z. (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis, EMBO J., 29, 1792–1802.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Doelling, J. H., Walker, J. M., Friedman, E. M., Thompson, A. R., and Vierstra, R. D. (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana, J. Biol. Chem., 277, 33105–33114.PubMedCrossRefGoogle Scholar
  72. 72.
    Xia, T., Xiao, D., Liu, D., Chai, W., Gong, Q., and Wang, N. N. (2012) Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis, PLoS One, 7, e37217.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pei, D., Zhang, W., Sun, H., Wei, X., Yue, J., and Wang, H. (2014) Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses, Plant Cell Rep., 33, 1697–1710.PubMedCrossRefGoogle Scholar
  74. 74.
    Chung, T., Suttangkakul, A., and Vierstra, R. D. (2009) The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8–lipid adduct are regulated by development and nutrient availability, Plant Physiol., 149, 220–234.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sugawara, K., Suzuki, N. N., Fujioka, Y., Mizushima, N., Ohsumi, Y., and Inagaki, F. (2004) The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8, Genes Cells, 9, 611–618.PubMedCrossRefGoogle Scholar
  76. 76.
    Stangler, T., Mayr, L. M., and Willbold, D. (2002) Solution structure of human GABA(A) receptor-associated protein GABARAP: implications for biolgoical funcrion and its regulation, J. Biol. Chem., 277, 13363–13366.PubMedCrossRefGoogle Scholar
  77. 77.
    Paz, Y., Elazar, Z., and Fass, D. (2000) Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p, J. Biol. Chem., 275, 25445–25450.PubMedCrossRefGoogle Scholar
  78. 78.
    Kumeta, H., Watanabe, M., Nakatogawa, H., Yamaguchi, M., Ogura, K., Adachi, W., Fujioka, Y., Noda, N. N., Ohsumi, Y., and Inagaki, F. (2010) The NMR structure of the autophagy-related protein Atg8, J. Biomol. NMR, 47, 237–241.PubMedCrossRefGoogle Scholar
  79. 79.
    Shpilka, T., Weidberg, H., Pietrokovski, S., and Elazar, Z. (2011) Atg8: an autophagy-related ubiquitin-like protein family, Genome Biol., 12, 226.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Vierstra, R. D. (2012) The expanding universe of ubiquitin and ubiquitin-like modifiers, Plant Physiol., 160, 2–14.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mohrluder, J., Schwarten, M., and Willbold, D. (2009) Structure and potential function of gamma-aminobutyrate type A receptor-associated protein, FEBS J., 276, 4989–5005.PubMedCrossRefGoogle Scholar
  82. 82.
    Coyle, J. E., Qamar, S., Rajashankar, K. R., and Nikolov, D. B. (2002) Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding, Neuron, 3, 63–74.CrossRefGoogle Scholar
  83. 83.
    Chae, Y. K., Im, H., Zhao, Q., Doelling, J. H., Vierstra, R. D., and Markley, J. L. (2004) Prevention of aggregation after refolding by balanced stabilization-destabilization: production of the Arabidopsis thaliana protein APG8a (At4g21980) for NMR structure determination, Protein Express. Purif., 34, 280–283.CrossRefGoogle Scholar
  84. 84.
    Chae, Y. K., Lee, K., and Markley, J. L. (2005) 1H, 15N and 13C resonance assignments of a protein involved in the autophagy process, At4g21980.1 from Arabidopsis thaliana, J. Biomol. NMR, 32, 337.PubMedCrossRefGoogle Scholar
  85. 85.
    Behrends, C., Sowa, M. E., Gygi, S. P., and Harper, J. W. (2010) Network organization of the human autophagy system, Nature, 466, 68–76.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Scherz-Shouval, R., Sagiv, Y., Shorer, H., and Elazar, Z. (2003) The COOH terminus of GATE-16, an intra-Golgi transport modulator, is cleaved by the human cysteine protease HsApg4A, J. Biol. Chem., 278, 14053–14058.PubMedCrossRefGoogle Scholar
  87. 87.
    Li, M., Hou, Y., Wang, J., Chen, X., Shao, Z. M., and Yin, X. M. (2011) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates, J. Biol. Chem., 286, 7327–7338.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Satoo, K., Noda, N. N., Kumeta, H., Fugioka, Y., Mizushima, N., Ohsumi, Y., and Inagaki, F. (2009) The structure of Atg4B–LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy, EMBO J., 28, 1341–1350.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Park, E., Woo, J., and Dinesh-Kumar, S. P. (2014) ATG4 cysteine proteases specificity toward ATG8 substrates, Autophagy, 10, 926–927.PubMedCrossRefGoogle Scholar
  90. 90.
    Woo, J., Park, E., and Dinesh-Kumar, S. P. (2014) Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases, Proc. Natl. Acad. Sci. USA, 111, 863–868.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Li, F., and Vierstra, R. D. (2014) ArabidopsisATG11, a scaffold that links the ATG1–ATG13 kinase complex to general autophagy and selective mitophagy, Autophagy, 10, 1466–1467.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Svenning, S., Lamark, T., Krause, K., and Johansen, T. (2011) Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1, Autophagy, 7, 993–1010.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zientara-Rytter, K., Lukomska, J., Moniuszko, G., Gwozdecki, R., Surowiecki, P., Lewandowska, M., Liszewska, F., Wawrzynska, A., and Sirko, A. (2011) Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors, Autophagy, 7, 1145–1158.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhou, J., Wang, J., Cheng, Y., Chi, Y. J., Fan, B., Yu, J. Q., and Chen, Z. (2011) NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses, PLoS Genet., 9, e1003196.CrossRefGoogle Scholar
  95. 95.
    Kissova, I., Deffieu, M., Manon, S., and Camougrand, N. (2004) Uth1p is involved in the autophagic degradation of mitochondria, J. Biol. Chem., 279, 39068–39074.PubMedCrossRefGoogle Scholar
  96. 96.
    Tal, M. C., Sasai, M., Lee, H. K., Yordy, B., Shadel, G. S., and Iwasaki, A. (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling, Proc. Natl. Acad. Sci. USA, 106, 2770–2775.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kanki, T., and Klionsky, D. J. (2008) Mitophagy in yeast occurs through a selective mechanism, J. Biol. Chem., 283, 32386–32393.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kanki, T., Wang, K., Baba, M., Bartholomew, C. R., Lynch-Day, M. A., Du, Z., Geng, J., Mao, K., Yang, Z., Yen, W. L., and Klionsky, D. J. (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy, Mol. Biol. Cell, 20, 4730–4738.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Okamoto, K., Kondo-Okamoto, N., and Ohsumi, Y. (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy, Dev. Cell, 17, 87–97.PubMedCrossRefGoogle Scholar
  100. 100.
    Kanki, T., Wang, K., Baba, M., and Klionsky, D. J. (2009) Atg32 is amitochondrial protein that confers selectivity during mitophagy, Dev. Cell, 17, 98–109.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kim, I., Rodriguez-Enriquez, S., and Lemasters, J. J. (2007) Selective degradation of mitochondria by mitophagy, Arch. Biochem. Biophys., 462, 245–253.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mortensen, M., Ferguson, D. J., and Simon, A. K. (2010) Mitochondrial clearance by autophagy in developing erythrocytes: clearly important, but just how muchso? Cell Cycle, 9, 1901–1906.PubMedCrossRefGoogle Scholar
  103. 103.
    Narendra, D., Tanaka, A., Suen, D. F., and Youle, R. J. (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell Biol., 183, 795–803.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Novak, I., Kirkin, V., Mc Ewan, D. G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Lohr, F., Popovic, D., Occhipinti, A., Reichert, A. S., Terzic, J., Dotsch, V., Ney, P. A., and Dikic, I. (2010) Nix is a selective autophagy receptor for mitochondrial clearance, EMBO J., 11, 45–51.CrossRefGoogle Scholar
  105. 105.
    Van Doorn, W. G., and Papini, A. (2013) Ultrastructure of autophagy in plant cells: a review, Autophagy, 9, 1922–1936.PubMedCrossRefGoogle Scholar
  106. 106.
    Li, F., Chung, T., and Vierstra, R. D. (2014) AUTOPHAGY-RELATED11 plays a critical role in general autophagyand senescence-induced mitophagy in Arabidopsis, Plant Cell, 26, 788–807.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Feng, Y., He, D., Yao, Z., and Klionsky, D. J. (2014) The machinery of macroautophagy, Cell Res., 24, 24–41.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hayward, A. P., Tsao, J., and Dinesh-Kumar, S. P. (2009) Autophagy and plant innate immunity: defense through degradation, Semin. Cell Dev. Biol., 20, 1041–1047.PubMedCrossRefGoogle Scholar
  109. 109.
    Ishida, H., and Yoshimoto, K. (2008) Chloroplasts are partially mobilized to the vacuole by autophagy, Autophagy, 4, 961–962.PubMedCrossRefGoogle Scholar
  110. 110.
    Izumi, M., Wada, S., Makino, A., and Ishida, H. (2010) The autophagic degradation of chloroplasts via Rubiscocontaining bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis, Plant Physiol., 154, 1196–1209.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wada, S., Ishida, H., Izumi, M., Yoshimoto, K., Ohsumi, Y., Mae, T., and Makino, A. (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves, Plant Physiol., 149, 885–893.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Motley, A. M., Nuttall, J. M., and Hettema, E. H. (2012) Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae, EMBO J., 31, 2852–2868.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Voitsekhovskaja, O. V., Schiermeyer, A., and Reumann, S. (2014) Plant peroxisomes are degraded by starvationinduced and constitutive autophagy in tobacco BY-2 suspension-cultured cells, Front. Plant Sci., 5, 629.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Yoshimoto, K., Shibata, M., Kondo, M., Oikawa, K., Sato, M., Toyooka, K., Shirasu, K., Nishimura, M., and Ohsumi, Y. (2014) Organ-specific quality control of plant peroxisomes is mediated by autophagy, J. Cell Sci., 127, 1161–1168.PubMedCrossRefGoogle Scholar
  115. 115.
    Honig, A., Avin-Wittenberg, T., Ufaz, S., and Galili, G. (2012) A new type of compartment, defined by plant-specific ATG8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation, Plant Cell, 24, 288–303.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Michaeli, S., and Galili, G. (2014) Degradation of organelles or specific organelle components via selective autophagy in plant cells, Int. J. Mol. Sci., 15, 7624–7638.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., and Olsen, R. W. (1999) GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton, Nature, 397, 69–72.PubMedCrossRefGoogle Scholar
  118. 118.
    Ketelaar, T., Voss, C., Dimmock, S. A., Thumm, M., and Hussey, P. J. (2004) Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins, FEBS Lett., 567, 302–306.PubMedCrossRefGoogle Scholar
  119. 119.
    Sagiv, Y., Legesse-Miller, A., Porat, A., and Elazar, Z. (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28, EMBO J., 19, 1494–1504.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kittler, J. T., Rostaing, P., Schiavo, G., Fritschy, J. M., Olsen, R., Triller, A., and Moss, S. J. (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors, Mol. Cell. Neurosci., 18, 13–25.PubMedCrossRefGoogle Scholar
  121. 121.
    Kirisako, T., Ichimura, Y., Okada, H., Kabeya, Y., Mizushima, N., Yoshimori, T., Ohsumi, M., Takao, T., Noda, T., and Ohsumi, Y. (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway, J. Cell Biol., 151, 263–276.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy, J. Biol. Chem., 282, 24131–24145.PubMedCrossRefGoogle Scholar
  123. 123.
    Kirkin, V., McEwan, D. G., Novak, I., and Dikic, I. (2009) A role for ubiquitin in selective autophagy, Mol. Cell, 34, 259–269.PubMedCrossRefGoogle Scholar
  124. 124.
    Colecchia, D., Strambi, A., Sanzone, S., Iavarone, C., Rossi, M., Dall’Armi, C., Piccioni, F., Verrotti di Pianella, A., and Chiariello, M. (2012) MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins, Autophagy, 8, 1724–1740.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kraft, C., Kijanska, M., Kalie, E., Siergiejuk, E., Lee, S. S., Semplicio, G., Stoffel, I., Brezovich, A., Verma, M., and Hansmann, I. (2012) Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy, EMBO J., 31, 3691–3703.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Nakatogawa, H., Ohbayashi, S., Sakoh-Nakatogawa, M., Kakuta, S., Suzuki, S. W., Kirisako, H., Kondo-Kakuta, C., Noda, N. N., Yamamoto, H., and Ohsumi, Y. (2012) The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation, J. Biol. Chem., 287, 28503–28507.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Popovic, D., Akutsu, M., Novak, I., Harper, J. W., Behrends, C., and Dikic, I. (2012) Rab GTPase-activating proteins in autophagy: regulation of endocyticand autophagy pathways by direct binding to human ATG8 modifiers, Mol. Cell. Biol., 32, 1733–1744.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V. (2014) Interactions between autophagy receptors and ubiquitinlike proteins form the molecular basis for selective autophagy, Autophagy, 53, 167–178.Google Scholar
  129. 129.
    Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy, Plant Cell, 16, 2967–2983.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Thompson, A. R., Doelling, J. H., Suttangkakul, A., and Vierstra, R. D. (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways, Plant Physiol., 138, 2097–2110.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ryabovol, V. V., and Minibayeva, F. V. (2014) Autophagic proteins ATG4 and ATG8 in wheat: structural characteristics and their role under stress conditions, Dokl. Biochem. Biophys., 458, 179–181.PubMedCrossRefGoogle Scholar
  132. 132.
    Slavikova, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z., and Galili, G. (2005) The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants, J. Exp. Bot., 56, 2839–2849.PubMedCrossRefGoogle Scholar
  133. 133.
    Shibuya, K., Niki, T., and Ichimura, K. (2013) Pollination induces autophagy in petunia petals via ethylene, J. Exp. Bot., 64, 1111–1120.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Galili, G., Altschuler, Y., and Levanony, H. (1993) Assembly and transport of seed storage proteins, Trends Cell Biol., 3, 437–442.PubMedCrossRefGoogle Scholar
  135. 135.
    Bassham, D. C. (2002) Golgi-independent trafficking of macromolecules to the plant vacuole, Adv. Bot. Res., 38, 65–91.CrossRefGoogle Scholar
  136. 136.
    Angelovici, R., Fait, A., Zhu, X., Szymanski, J., Feldmesser, E., Fernie, A. R., and Galili, G. (2009) Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development, Plant Physiol., 151, 2058–2072.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Rose, T. L., Bonneau, L., Der, C., Marty-Mazars, D., and Marty, F. (2006) Starvation-induced expression of autophagy-related genes in Arabidopsis, Biol. Cell, 98, 53–67.PubMedCrossRefGoogle Scholar
  138. 138.
    Kuzuoglu-Ozturk, D., Cebeci Yalcinkaya, O., Akpinar, B. A., Mitou, G., Korkmaz, G., Gozuacik, D., and Budak, H. (2012) Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response, Planta, 236, 1081–1092.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Kazan Institute of Biochemistry and BiophysicsRussian Academy of SciencesKazanRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations