Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 4, pp 315–328 | Cite as

Molecular mechanisms and microRNAs in osteosarcoma pathogenesis

  • N. E. Kushlinskii
  • M. V. Fridman
  • E. A. BragaEmail author
Review

Abstract

This review summarizes data on microRNA (miRNA) genomic organization, biogenesis, and functions in carcinogenesis. The roles of key genes and regulatory miRNAs in molecular mechanisms and signaling pathways involved in the development of osteosarcoma, the most aggressive type of bone tumor striking mainly in adolescence and early adulthood, are discussed in detail. The most critical pathways in osteosarcoma pathogenesis are the Notch, Wnt, NF-κB, p53, PI3K/Akt, and MAPK pathways. The balance between cell survival and apoptosis is determined by the Wnt and NF-κB pathways, as well as by the ratio between the activities of the MAPK and PI3K/Akt pathways. Several miRNAs (miR-21, -34a, -143, -148a, -195a, -199a-3p, -382) regulate multiple target genes, pathways, and processes essential for osteosarcoma pathogenesis. Data on the key genes and regulatory miRNAs involved in metastasis and tumor cell response to drug treatment are presented. Possible applications of miRNA in osteosarcoma diagnostics and treatment are discussed.

Keywords

regulatory miRNAs key genes oncogenesis signaling pathways osteosarcoma metastasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kushlinskii, N. E., Timofeev, Yu. S., Shirshova, A. N., Gordukova, M. A., Philipenko, M. L., Gershtein, E. S., and Senjapova, E. R. (2014) Osteosarcoma-Specific MicroRNA (miRNA) Levels in Blood Plasma of Patients and Healthy Persons. Book of Abstracts of 27th Annual Meeting of the European Musculo-Skeletal Oncology Society, May 21-23, 2014, Vienna, Austria, pp. 56–57.Google Scholar
  2. 2.
    Kobayashi, E., Hornicek, F. J., and Duan, Z. (2012) MicroRNA involvement in osteosarcoma, Sarcoma, 359739.Google Scholar
  3. 3.
    Kafchinski, L. A., and Jones, K. B. (2014) MicroRNAs in osteosarcomagenesis, Adv. Exp. Med. Biol., 804, 119–127.CrossRefPubMedGoogle Scholar
  4. 4.
    Dweep, H., Sticht, C., Pandey, P., and Gretz, N. (2011) miRWalk database: prediction of possible miRNA binding sites by “walking” the genes of three genomes, J. Biomed. Inform., 44, 839–847.CrossRefPubMedGoogle Scholar
  5. 5.
    Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, 75, 855–862.CrossRefPubMedGoogle Scholar
  6. 6.
    Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 403, 901–906.CrossRefPubMedGoogle Scholar
  7. 7.
    Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Muller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E., and Ruvkun, G. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA, Nature, 408, 86–89.CrossRefPubMedGoogle Scholar
  8. 8.
    Kozomara, A., and Griffiths-Jones, S. (2014) miRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res., 42, 68–73.CrossRefGoogle Scholar
  9. 9.
    Lopez Serra, P., and Esteller, M. (2012) DNA methylation associated silencing of tumor-suppressor microRNAs in cancer, Oncogene, 31, 1609–1622.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92–105.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Griffiths-Jones, S., Saini, H. K., Van Dongen, S., and Enright, A. J. (2008) miRBase: tools for microRNA genomics, Nucleic Acids Res., 36, 154–158.CrossRefGoogle Scholar
  12. 12.
    Olive, V., Jiang, I., and He, L. (2010) miR-17-92, a cluster of miRNAs in the midst of the cancer network, Int. J. Biochem. Cell Biol., 42, 1348–1354.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Saini, H. K., Griffiths-Jones, S., and Enright, A. J. (2007) Genomic analysis of human microRNA transcripts, Proc. Natl. Acad. Sci. USA, 104, 17719–17724.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cullen, B. R. (2004) Transcription and processing of human microRNA precursors, Mol. Cell, 16, 861–865.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang, D., Lu, M., Miao, J., Li, T., Wang, E., and Cui, Q. (2009) Cepred: predicting the co-expression patterns of the human intronic microRNAs with their host genes, PLoS One, 4, e4421.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II, EMBO J., 23, 4051–4060.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Borchert, G. M., Lanier, W., and Davidson, B. L. (2006) RNA polymerase III transcribes human microRNAs, Nat. Struct. Mol. Biol., 13, 1097–1101.CrossRefPubMedGoogle Scholar
  18. 18.
    Macfarlane, L. A., and Murphy, P. R. (2010) MicroRNA: biogenesis, function and role in cancer, Curr. Genom., 11, 537–561.CrossRefGoogle Scholar
  19. 19.
    Graves, P., and Zeng, Y. (2012) Most mammalian mRNAs are conserved targets of microRNAs: a global view, Genom. Proteom. Bioinform., 10, 239–245.CrossRefGoogle Scholar
  20. 20.
    Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., Taccioli, C., Zanesi, N., Garzon, R., Aqeilan, R. I., Alder, H., Volinia, S., Rassenti, L., Liu, X., Liu, C. G., Kipps, T. J., Negrini, M., and Croce, C. M. (2008) miR-15a and miR-16-1 cluster functions in human leukemia, Proc. Natl. Acad. Sci. USA, 105, 5166–5171.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fabbri, M. (2010) miRNAs as molecular biomarkers of cancer, Expert. Rev. Mol. Diagn., 10, 435–444.CrossRefPubMedGoogle Scholar
  22. 22.
    Lebanony, D., Benjamin, H., Gilad, S., Ezagouri, M., Dov, A., Ashkenazi, K., Gefen, N., Izraeli, S., Rechavi, G., Pass, H., Nonaka, D., Li, J., Spector, Y., Rosenfeld, N., Chajut, A., Cohen, D., Aharonov, R., and Mansukhani, M. (2009) Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma, J. Clin. Oncol., 27, 2030–2037.CrossRefPubMedGoogle Scholar
  23. 23.
    Landi, M. T., Zhao, Y., Rotunno, M., Koshiol, J., Liu, H., Bergen, A. W., Rubagotti, M., Goldstein, A. M., Linnoila, I., Marincola, F. M., Tucker, M. A., Bertazzi, P. A., Pesatori, A. C., Caporaso, N. E., McShane, L. M., and Wang, E. (2010) MicroRNA expression differentiates histology and predicts survival of lung cancer, Clin. Cancer Res., 16, 430–441.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Papagiannakopoulos, T., Shapiro, A., and Kosik, K. S. (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells, Cancer Res., 68, 8164–8172.CrossRefPubMedGoogle Scholar
  25. 25.
    Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y. Y. (2007) miR-21-mediated tumor growth, Oncogene, 26, 2799–2803.CrossRefPubMedGoogle Scholar
  26. 26.
    He, L., He, X., Lim, L. P., De Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., Jackson, A. L., Linsley, P. S., Chen, C., Lowe, S. W., Cleary, M. A., and Hannon, G. J. (2007) A microRNA component of the p53 tumor suppressor network, Nature, 447, 1130–1134.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hermeking, H. (2010) The miR-34 family in cancer and apoptosis, Cell Death Differ., 17, 193–199.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang, R., Ma, J., Wu, Q., Xia, J., Miele, L., Sarkar, F. H., and Wang, Z. (2013) Functional role of miR-34 family in human cancer, Curr. Drug Targets, 14, 1185–1191.CrossRefPubMedGoogle Scholar
  29. 29.
    Choudhury, S. N., and Li, Y. (2012) miR-21 and let-7 in the Ras and NF-κB pathways, MicroRNA, 1, 65–69.CrossRefPubMedGoogle Scholar
  30. 30.
    Lee, S. T., Chu, K., Oh, H. J., Im, W. S., Lim, J. Y., Kim, S. K., Park, C. K., Jung, K. H., Lee, S. K., Kim, M., and Roh, J. K. (2011) Let-7 microRNA inhibits the proliferation of human glioblastoma cells, J. Neurooncol., 102, 19–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Qian, P., Zuo, Z., Wu, Z., Meng, X., Li, G., Wu, Z., Zhang, W., Tan, S., Pandey, V., Yao, Y., Wang, P., Zhao, L., Wang, J., Wu, Q., Song, E., Lobie, P. E., Yin, Z., and Zhu, T. (2011) Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis, Cancer Res., 71, 6463–6474.CrossRefPubMedGoogle Scholar
  32. 32.
    Nadiminty, N., Tummala, R., Lou, W., Zhu, Y., Shi, X. B., Zou, J. X., Chen, H., Zhang, J., Chen, X., Luo, J., deVere White, R. W., Kung, H. J., Evans, C. P., and Gao, A. C. (2012) MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth, PLoS One, 7, e32832.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang, S., Tang, Y., Cui, H., Zhao, X., Luo, X., Pan, W., Huang, X., and Shen, N. (2011) Let-7/miR-98 regulate Fas and Fas-mediated apoptosis, Genes Immun., 12, 149–154.CrossRefPubMedGoogle Scholar
  34. 34.
    Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674.CrossRefPubMedGoogle Scholar
  35. 35.
    Deng, S., Calin, G. A., Croce, C. M., Coukos, G., and Zhang, L. (2008) Mechanisms of microRNA deregulation in human cancer, Cell Cycle, 7, 2643–2646.CrossRefPubMedGoogle Scholar
  36. 36.
    Calin, G. A., and Croce, C. M. (2006) MicroRNA signatures in human cancers, Nat. Rev. Cancer, 6, 857–866.CrossRefPubMedGoogle Scholar
  37. 37.
    Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. USA, 108, 5003–5008.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gajos-Michniewicz, A., Duechler, M., and Czyz, M. (2014) MiRNA in melanoma-derived exosomes, Cancer Lett., 347, 29–37.CrossRefPubMedGoogle Scholar
  39. 39.
    Lim, P. K., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., Gregory, L. A., Greco, S. J., Bryan, M., Patel, P. S., and Rameshwar, P. (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells, Cancer Res., 71, 1550–1560.CrossRefPubMedGoogle Scholar
  40. 40.
    He, J. P., Hao, Y., Wang, X. L., Yang, X. J., Shao, J. F., Guo, F. J., and Feng, J. X. (2014) Review of the molecular pathogenesis of osteosarcoma, Asian Pac. J. Cancer Prev., 15, 5967–5976.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu, L., McManus, M. M., and Hughes, D. P. (2013) Understanding the biology of bone sarcoma from early initiating events through late events in metastasis and disease progression, Front. Oncol., 3, 230.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhou, W., Hao, M., Du, X., Chen, K., Wang, G., and Yang, J. (2014) Advances in targeted therapy for osteosarcoma, Discov. Med., 17, 301–307.PubMedGoogle Scholar
  43. 43.
    Ouellet, V., and Siegel, P. M. (2012) CCN3 modulates bone turnover and is a novel regulator of skeletal metastasis, J. Cell Commun. Signal., 6, 73–85.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    De Boer, J., Van Royen, B. J., and Helder, M. N. (2013) Mechanisms of therapy resistance in osteosarcoma: a review, Oncol. Discov., doi: org/10.7243/2052-6199-1-8.Google Scholar
  45. 45.
    Misso, G., Di Martino, M. T., De Rosa, G., Farooqi, A. A., Lombardi, A., Campani, V., Zarone, M. R., Gulla, A., Tagliaferri, P., Tassone, P., and Caraglia, M. (2014) Mir-34: a new weapon against cancer? Mol. Ther. Nucleic Acids, 3, e194.CrossRefPubMedGoogle Scholar
  46. 46.
    Li, Y., Zhang, J., Zhang, L., Si, M., Yin, H., and Li, J. (2013) Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling, Carcinogenesis, 34, 1601–1610.CrossRefPubMedGoogle Scholar
  47. 47.
    Lv, H., Pei, J., Liu, H., Wang, H., and Liu, J. (2014) A polymorphism site in the pre miR 34a coding region reduces miR 34a expression and promotes osteosarcoma cell proliferation and migration, Mol. Med. Rep., 10, 2912–2916.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Tian, Y., Zhang, Y. Z., and Chen, W. (2014) MicroRNA-199a-3p and microRNA-34a regulate apoptosis in human osteosarcoma cells, Biosci. Rep., 34, doi: 10.1042/BSR20140084.Google Scholar
  49. 49.
    Shang, Y., Wang, L. Q., Guo, Q. Y., and Shi, T. L. (2015) MicroRNA-196a overexpression promotes cell proliferation and inhibits cell apoptosis through PTEN/Akt/FOXO1 pathway, Int. J. Clin. Exp. Pathol., 8, 2461–2472.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Loginov, V. I., Rykov, S. V., Fridman, M. V., and Braga, E. A. (2015) Methylation of miRNA genes and oncogenesis, Biochemistry (Moscow), 80, 145–162.CrossRefGoogle Scholar
  51. 51.
    Silva, G., and Aboussekhra, A. (2015) p16INK4A inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-ß1, Mol. Carcinog., doi: 10.1002/mc.22299.Google Scholar
  52. 52.
    Ziyan, W., Shuhua, Y., Xiufang, W., and Xiaoyun, L. (2011) MicroRNA-21 is involved in osteosarcoma cell invasion and migration, Med. Oncol., 28, 1469–1474.CrossRefPubMedGoogle Scholar
  53. 53.
    Ziyan, W., and Yang, L. (2016) MicroRNA-21 regulates the sensitivity to cisplatin in a human osteosarcoma cell line, Ir. J. Med. Sci., 185, 85–91.CrossRefPubMedGoogle Scholar
  54. 54.
    Duan, Z., Choy, E., Harmon, D., Liu, X., Susa, M., Mankin, H., and Hornicek, F. (2011) MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration, Mol. Cancer Ther., 10, 1337–1345.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ouyang, L., Liu, P., Yang, S., Ye, S., Xu, W., and Liu, X. (2013) A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma, Med. Oncol., 30, 340.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang, H., Cai, X., Wang, Y., Tang, H., Tong, D., and Ji, F. (2010) microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2, Oncol. Rep., 24, 1363–1369.PubMedGoogle Scholar
  57. 57.
    Osaki, M., Takeshita, F., Sugimoto, Y., Kosaka, N., Yamamoto, Y., Yoshioka, Y., Kobayashi, E., Yamada, T., Kawai, A., Inoue, T., Ito, H., Oshimura, M., and Ochiya, T. (2011) MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression, Mol. Ther., 19, 1123–1130.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ye, Z., Jingzhong, L., Yangbo, L., Lei, C., and Jiandong, Y. (2013) Propofol inhibits proliferation and invasion of osteosarcoma cells by regulation of microRNA-143 expression, Oncol. Res., 21, 201–207.CrossRefPubMedGoogle Scholar
  59. 59.
    Li, F., Li, S., and Cheng, T. (2014) TGF-ß1 promotes osteosarcoma cell migration and invasion through the miR-143-versican pathway, Cell. Physiol. Biochem., 34, 2169–2179.CrossRefPubMedGoogle Scholar
  60. 60.
    Ma, W., Zhang, X., Chai, J., Chen, P., Ren, P., and Gong, M. (2014) Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma, Tumour Biol., 35, 12467–12472.CrossRefPubMedGoogle Scholar
  61. 61.
    Chang, Y., Zhao, Y., Gu, W., Cao, Y., Wang, S., Pang, J., and Shi, Y. (2015) Bufalin inhibits the differentiation and proliferation of cancer stem cells derived from primary osteosarcoma cells through Mir-148a, Cell. Physiol. Biochem., 36, 1186–1196.CrossRefPubMedGoogle Scholar
  62. 62.
    Han, K., Chen, X., Bian, N., Ma, B., Yang, T., Cai, C., Fan, Q., Zhou, Y., and Zhao, T. B. (2015) MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1, Oncotarget, 6, 8875–8889.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lian, F., Cui, Y., Zhou, C., Gao, K., and Wu, L. (2015) Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma, PLoS One, 10, e0121499.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Mao, J. H., Zhou, R. P., Peng, A. F., Liu, Z. L., Huang, S. H., Long, X. H., and Shu, Y. (2012) microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN, Oncol. Lett., 4, 1125–1129.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Cai, H., Zhao, H., Tang, J., and Wu, H. J. (2015) Serum miR-195 is a diagnostic and prognostic marker for osteosarcoma, Surg. Res., 194, 505–510.CrossRefGoogle Scholar
  66. 66.
    He, W., Feng, L., Xia, D., and Han, N. (2015) MiR-374a promotes the proliferation of human osteosarcoma by downregulating FOXO1 expression, Int. J. Clin. Exp. Med., 8, 3482–3489.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhu, J., Feng, Y., Ke, Z., Yang, Z., Zhou, J., Huang, X., and Wang, L. (2012) Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin, Am. J. Pathol., 180, 2440–2451.CrossRefPubMedGoogle Scholar
  68. 68.
    Mu, Y., Zhang, H., Che, L., and Li, K. (2014) Clinical significance of microRNA-183/Ezrin axis in judging the prognosis of patients with osteosarcoma, Med. Oncol., 31, 821.CrossRefPubMedGoogle Scholar
  69. 69.
    Jones, K. B., Salah, Z., Del Mare, S., Galasso, M., Gaudio, E., Nuovo, G. J., Lovat, F., LeBlanc, K., Palatini, J., Randall, R. L., Volinia, S., Stein, G. S., Croce, C. M., Lian, J. B., and Aqeilan, R. I. (2012) MicroRNA signatures associate with pathogenesis and progression of osteosarcoma, Cancer Res., 72, 1865–1877.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Xu, M., Jin, H., Xu, C. X., Sun, B., Song, Z. G., Bi, W. Z., and Wang, Y. (2015) miR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1, Mol. Ther., 23, 89–98.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Thayanithy, V., Sarver, A. L., Kartha, R. V., Li, L., Angstadt, A. Y., Breen, M., Steer, C. J., Modiano, J. F., and Subramanian, S. (2012) Perturbation of 14q32 miRNAscMYC gene network in osteosarcoma, Bone, 50, 171–181.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sun, X. H., Geng, X. L., Zhang, J., and Zhang, C. (2015) miRNA-646 suppresses osteosarcoma cell metastasis by downregulating fibroblast growth factor 2 (FGF2), Tumour Biol., 36, 2127–2134.CrossRefPubMedGoogle Scholar
  73. 73.
    Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., and Mi, S. (2015) Exosome and exosomal microRNA: trafficking, sorting, and function, Genom. Proteom. Bioinform., 13, 17–24.CrossRefGoogle Scholar
  74. 74.
    Kalra, H., Simpson, R. J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V. C., Borras, F. E., Breakefield, X., Budnik, V., Buzas, E., Camussi, G., Clayton, A., Cocucci, E., Falcon-Perez, J. M., Gabrielsson, S., Gho, Y. S., Gupta, D., Harsha, H. C., Hendrix, A., Hill, A. F., Inal, J. M., Jenster, G., Kramer-Albers, E. M., Lim, S. K., Llorente, A., Lotvall, J., Marcilla, A., Mincheva-Nilsson, L., Nazarenko, I., Nieuwland, R., Nolte’t-Hoen, E. N., Pandey, A., Patel, T., Piper, M. G., Pluchino, S., Prasad, T. S., Rajendran, L., Raposo, G., Record, M., Reid, G. E., Sanchez-Madrid, F., Schiffelers, R. M., Siljander, P., Stensballe, A., Stoorvogel, W., Taylor, D., Thery, C., Valadi, H., Van Balkom, B. W., Vazquez, J., Vidal, M., Wauben, M. H., Yanez-Mo, M., Zoeller, M., and Mathivanan, S. (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation, PLoS Biol., 10, e1001450.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mathivanan, S., Fahner, C. J., Reid, G. E., and Simpson, R. J. (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids, Nucleic Acids Res., 40, 1241–1244.CrossRefGoogle Scholar
  76. 76.
    Zhang, C., Yao, C., Li, H., Wang, G., and He, X. (2014) Combined elevation of microRNA-196a and microRNA-196b in sera predicts unfavorable prognosis in patients with osteosarcomas, Int. J. Mol. Sci., 15, 6544–6555.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Yuan, J., Chen, L., Chen, X., Sun, W., and Zhou, X. (2012) Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma, J. Int. Med. Res., 40, 2090–2097.CrossRefPubMedGoogle Scholar
  78. 78.
    Cai, H., Lin, L., Cai, H., Tang, M., and Wang, Z. (2013) Prognostic evaluation of microRNA-210 expression in pediatric osteosarcoma, Med. Oncol., 30, 499.CrossRefPubMedGoogle Scholar
  79. 79.
    Sarver, A. L., Thayanithy, V., Scott, M. C., Cleton-Jansen, A. M., Hogendoorn, P. C., Modiano, J. F., and Subramanian, S. (2013) MicroRNAs at the human 14q32 locus have prognostic significance in osteosarcoma, Orphanet. J. Rare Dis., 8, 7.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wang, Y., Jia, L. S., Yuan, W., Wu, Z., Wang, H. B., Xu, T., Sun, J. C., Cheng, K. F., and Shi, J. G. (2015) Low miR-34a and miR-192 are associated with unfavorable prognosis in patients suffering from osteosarcoma, Am. J. Trancl. Res., 7, 111–119.Google Scholar
  81. 81.
    Varshney, J., and Subramanian, S. (2015) MicroRNAs as potential target in human bone and soft tissue sarcoma therapeutics, Front. Mol. Biosci., 2, 31.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Chen, Y., Zhu, X., Zhang, X., Liu, B., and Huang, L. (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy, Mol. Ther., 18, 1650–1656.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. E. Kushlinskii
    • 1
  • M. V. Fridman
    • 2
  • E. A. Braga
    • 3
    Email author
  1. 1.Blokhin Cancer Research CenterMoscowRussia
  2. 2.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  3. 3.Institute of General Pathology and PathophysiologyMoscowRussia

Personalised recommendations