Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 3, pp 275–283 | Cite as

Dynamics of antagonistic potency of Rhodobacter capsulatus PG lipopolysaccharide against endotoxin-induced effects

  • D. S. KabanovEmail author
  • D. A. Serov
  • S. V. Zubova
  • S. V. Grachev
  • I. R. Prokhorenko
Article

Abstract

The dynamics of antagonistic potency of lipopolysaccharide (LPS) isolated from Rhodobacter capsulatus PG on the synthesis of proinflammatory (TNF-α, IL-1β, IL-8, IL-6, IFN-γ) and antiinflammatory (IL-10, IL-1Ra) cytokines induced by highly stimulatory endotoxins from Escherichia coli or Salmonella enterica have been studied. Using human whole blood, we have shown that R. capsulatus PG LPS inhibited most pronouncedly the endotoxin-induced synthesis of TNF-α, IL-1β, IL-8, and IL-6 during the first 6 h after endotoxin challenge. Similarly, the endotoxin-induced release of IFN-γ was abolished by R. capsulatus PG LPS as well (24 h). In contrast to the above-mentioned cytokines, the relatively weak antagonistic activity of R. capsulatus PG LPS against endotoxin-triggered production of IL-6 and IL-8 was revealed. Since R. capsulatus PG LPS displays more potent antagonistic activity against deleterious effects of S. enterica LPS than those of E. coli LPS in the cases of such cytokines as IL-1β (6 and 24 h), IL-6 and IL-8 (4 h), we conclude that the effectiveness of protective action of antagonist is mostly determined by the primary lipid A structure of the employed agonist.

Key words

lipopolysaccharide (endotoxin) antagonist cytokine TNF-α IL-1β IL-6 IL-8 IL-10 IL-1Ra IFN-γ 

Abbreviations

CD

cluster of differentiation

IFN-γ

interferon γ

IL

interleukin

LBP

LPS-binding protein

LPS

lipopolysaccharide

mCD14

membrane-anchored form of CD14

MD-2

myeloid differentiation factor-2, a secreted glycoprotein

MyD88

myeloid differentiation primary-response gene 88, adaptor-like protein 88 has a Toll/interleukin-1 receptor (TIR) domain

PMA

4-phorbol-12-myristate-13-acetate

PMN

polymorphonuclear leukocytes

sCD14

soluble form of CD14 not associated with cell membrane

TLR4

Toll-like receptor 4

TNFR1

TNF receptor 1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G., and De Vries, J. E. (1991) Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes, J. Exp. Med., 174, 1209–1220.CrossRefPubMedGoogle Scholar
  2. 2.
    Kabanov, D. S., and Prokhorenko, I. R. (2013) Involvement of Toll-like receptor 4 and Fc receptors gamma in human neutrophil priming by endotoxins from Escherichia coli, Biochemistry (Moscow), 78, 185–193.CrossRefGoogle Scholar
  3. 3.
    Kabanov, D. S., Grachev, S. V., and Prokhorenko, I. R. (2014) Role of CD11b/CD18 in priming of human leukocytes by endotoxins glycoforms from Escherichia coli, Biochemistry (Moscow), 79, 812–819.CrossRefGoogle Scholar
  4. 4.
    Zeuke, S., Ulmer, A. J., Kusumoto, S., Katus, H. A., and Heine, H. (2002) TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS, Cardiovasc. Res., 56, 126–134.CrossRefPubMedGoogle Scholar
  5. 5.
    Yan, S. R., Al-Hertani, W., Byers, D., and Bortolussi, R. (2002) Lipopolysaccharide-binding protein- and CD14-dependent activation of mitogen-activated protein kinase p38 by lipopolysaccharide in human neutrophils is associated with priming of respiratory burst, Infect. Immun., 70, 4068–4074.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vosbeck, K., Tobias, P., Mueller, H., Allen, R. A., Arfors, K.-E., Ulevitch, R. J., and Sklar, L. A. (1990) Priming of polymorphonuclear granulocytes by lipopolysaccharides and its complexes with lipopolysaccharide binding protein and high density lipoprotein, J. Leukoc. Biol., 47, 97–104.PubMedGoogle Scholar
  7. 7.
    Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4, J. Exp. Med., 189, 1777–1782.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Parker, L. C., Whyte, M. K. B., Dower, S. K., and Sabroe, I. (2005) The expression and roles of Toll-like receptors in the biology of the human neutrophil, J. Leukoc. Biol., 77, 886–892.CrossRefPubMedGoogle Scholar
  9. 9.
    Schmitz, G., and Orso, E. (2002) CD14 signaling in lipid rafts: new ligands and co-receptors, Curr. Opin. Lipidol., 13, 513–521.CrossRefPubMedGoogle Scholar
  10. 10.
    Tamassia, N., Le Moigne, V., Calzetti, F., Donini, M., Gasperini, S., Ear, T., Cloutier, A., Martinez, F. O., Fabbri, M., Locati, M., Mantovani, A., McDonald, P. P., and Cassatella, M. A. (2007) The MyD88-independent pathway is not mobilized in human neutrophils stimulated via TLR4, J. Immunol., 178, 7344–7356.CrossRefPubMedGoogle Scholar
  11. 11.
    Sharif, O., Bolshakov, V. N., Raines, S., Newham, P., and Perkins, N. D. (2007) Transcriptional profiling of the LPS induced NF-κB response in macrophages, BMC Immunol., 8, 1–18.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Grachev, S. V., Prokhorenko, I. R., Zubova, S. V., Kabanov, D. S., Kosiakova, N. I., Prokhorenko, S. V., and Melzer, M. (2012) in Molecular Mechanisms of Endotoxins Interaction with Target Cells (Kubatiev, A. A., ed.) [in Russian], Moscow.Google Scholar
  13. 13.
    O’Neill, L. A. J., Bryant, C. E., and Doyle, S. L. (2009) Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer, Pharmacol. Rev., 61, 177–197.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vorobeva, E. V., Krasikova, I. N., and Solov’eva, T. F. (2006) Influence of lipopolysaccharides and lipids A from some marine bacteria on spontaneous and Escherichia coli LPS-induced TNF-alpha release from peripheral human blood cells, Biochemistry (Moscow), 71, 759–766.CrossRefGoogle Scholar
  15. 15.
    Voloshina, E. V., Kosiakova, N. I., and Prokhorenko, I. R. (2014) Lipopolysaccharide from Rhodobacter capsulatus counteracts the effects of toxic lipopolysaccharides and inhibits the release of TNF-α, IL-6, and IL-1β in human whole blood, Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol., 8, 23–29.CrossRefGoogle Scholar
  16. 16.
    Loppnow, H., Libby, P., Freudenberg, M., Krauss, J. H., Weckesser, J., and Mayer, H. (1990) Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS, Infect. Immun., 58, 3743–3750.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Rose, J. R. Christ, W. J., Bristol, J. R., Kawata, T., and Rossignol, D. P. (1995) Agonistic and antagonistic activities of bacterially derived Rhodobacter sphaeroides lipid A: comparison with activities of synthetic material of the proposed structure and analogs, Infect. Immun., 63, 833–839.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Popa, C., Abdollahi-Roodsaz, S., Joosten, L. A. B., Takahashi, N., Sprong, T., Matera, G., Liberto, M. C., Foca, A., Van Deuren, M., Kullberg, B. J., Van den Berg, W. B., Van der Meer, J. W. M., and Netea, M. G. (2007) Bartonella quintana lipopolysaccharide is a natural antagonist of Toll-like receptor 4, Infect. Immun., 75, 4831–4837.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jemmett, K., Macagno, A., Molteni, M., Heckels, J. E., Rossetti, C., and Christodoulides, M. (2008) A cyanobacterial lipopolysaccharide antagonist inhibits cytokine production induced by Neisseria meningitidis in a human whole-blood model of septicemia, Infect. Immun., 76, 3156–3163.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Maeshima, N., and Fernandez, R. C. (2013) Recognition of lipid A variants by the TLR4-MD-2 receptor complex, Front. Cell. Infect. Microbiol., 3, 3.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mullarkey, M., Rose, J. R., Bristol, J., Kawata, T., Kimura, A., Kobayashi, S., Przetak, M., Chow, J., Gusovsky, F., Christ, W. J., and Rossignol, D. P. (2003) Inhibition of endotoxin response by E5564, a novel Toll-like receptor 4-directed endotoxin antagonist, JPET, 304, 1093–1102.CrossRefGoogle Scholar
  22. 22.
    Kawata, T., Bristol, J. R., Rossignol, D. P., Rose, J. R., Kobayashi, S., Yokohama, H., Ishibashi, A., Christ, W. J., Katayama, K., Yamatsu, I., and Kishi, Y. (1999) E5531, a synthetic non-toxic lipid A derivative blocks the immuno-biological activities of lipopolysaccharide, Br. J. Pharmacol., 127, 853–862.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lynn, M., Wong, Y. N., Wheeler, J. L., Kao, R. J., Perdomo, C. A., Noveck, R., Vargas, R., D’Angelo, T., Gotzkowsky, S., McMahon, F. G., Wasan, K. M., and Rossignol, D. P. (2004) Extended in vivo pharmacodynamic activity of E5564 in normal volunteers with experimental endotoxemia, J. Pharmacol. Exp. Ther., 308, 175–181.CrossRefPubMedGoogle Scholar
  24. 24.
    Leon, C. G., Tory, R., Jia, J., Sivak, O., and Wasan, K. M. (2008) Discovery and development of Toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases, Pharm. Res., 25, 1751–1761.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Piazza, M., Yu, L., Teghanemt, A., Gioannini, T., Weiss, J., and Peri, F. (2009) Evidence of specific interaction between synthetic antisepsis agents and CD14, Biochemistry, 48, 12337–12344.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Piazza, M., Calabrese, V., Damore, G., Cighetti, R., Gioannini, T., Weiss, J., and Peri, F. (2012) A synthetic lipid A mimetic modulates human TLR4 activity, Chem. Med. Chem., 7, 213–217.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Peri, F., and Piazza, M. (2012) Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonist, Biotechnol. Adv., 30, 251–260.CrossRefPubMedGoogle Scholar
  28. 28.
    Kul’shin, V. A., Iakovlev, A. P., Avaeva, S. N., and Dmitriev, B. A. (1987) Improved method of lipopolysaccharide isolation from gram-negative bacteria, Mol. Gen. Microbiol. Virusol., 5, 44–46.Google Scholar
  29. 29.
    Makhneva, Z. K., Vishnivetskaya, T. A., and Prokhorenko, I. R. (1996) Effect of isolation procedures on the yield and composition of lipopolysaccharides from photosynthetic bacteria, Appl. Biochem. Microbiol., 32, 405–407.Google Scholar
  30. 30.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 72, 248–254.CrossRefPubMedGoogle Scholar
  31. 31.
    Spirin, A. S. (1958) Spectrophotometric definition of the total quantity of nucleic acids, Biochemistry (Moscow), 23, 656–662.Google Scholar
  32. 32.
    Krauss, J. H., Weckesser, J., and Mayer, H. (1988) Electrophoretic analysis of lipopolysaccharides of purple nonsulfur bacteria, Int. J. System. Bacteriol., 38, 157–163.CrossRefGoogle Scholar
  33. 33.
    Tan, L., and Grewal, P. S. (2002) Comparison of two silver staining techniques for detecting lipopolysaccharides in polyacrylamide gels, J. Clin. Microbiol., 40, 4372–4374.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gallay, Ph., Jongeneel, C. V., Barras, C., Burnier, M., Baumgartner, J.-D., Glauser, M. P., and Heumann, D. (1993) Short time exposure to lipopolysaccharide is sufficient to activate human monocytes, J. Immunol., 150, 5086–5093.PubMedGoogle Scholar
  35. 35.
    Netea, M. G., Demacker, P. N., Kullberg, B. J., Jacobs, L. E., Verver-Jansen, T. J., Boerman, O. C., Stalenhoef, A. F., and Van der Meer, J. W. (1998) Bacterial lipopolysaccharide binds and stimulates cytokine-producing cells before neutralization by endogenous lipoproteins can occur, Cytokine, 10, 766–772.CrossRefPubMedGoogle Scholar
  36. 36.
    Schildberger, A., Rossmanith, E., Eichhorn, T., Strassl, K., and Weber, V. (2013) Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide, Mediators Inflamm., 2013, 697972.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zughaier, S. M., Zimmer, S. M., Datta, A., Carlson, R. W., and Stephens, D. S. (2005) Differential induction of the toll-like receptor 4-MyD88-dependent and-independent signaling pathways by endotoxins, Infect. Immun., 73, 2940–2950.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation, Cell, 140, 805–820.CrossRefPubMedGoogle Scholar
  39. 39.
    De Forge, L. E., and Remick, D. G. (1991) Kinetics of TNF, IL-6, and IL-8 gene expression in LPS-stimulated human whole blood, Biochem. Biophys. Res. Commun., 174, 18–24.CrossRefGoogle Scholar
  40. 40.
    Palma, C., Cassone, A., Serbousek, D., Pearson, C. A., and Djeu, J. Y. (1992) Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans, Infect. Immun., 60, 4604–4611.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Cassatella, M. A., Guasparri, I., Ceska, M., Bazzoni, F., and Rossi, F. (1993) Interferon-gamma inhibits interleukin-8 production by human polymorphonuclear leucocytes, Immunology, 78, 177–184.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Fujishima, S., Hoffman, A. R., Vu, T., Kim, K. J., Zheng, H., Daniel, D., Kim, Y., Wallace, E. F., Larrick, J. W., and Raffin, T. A. (1993) Regulation of neutrophil interleukin 8 gene expression and protein secretion by LPS, TNF-α, and IL-1β, J. Cell. Physiol., 154, 478–485.CrossRefPubMedGoogle Scholar
  43. 43.
    Meda, L., Gasperini, S., Ceska, M., and Cassatella, M. A. (1994) Modulation of proinflammatory cytokine release from human polymorphonuclear leukocytes by gamma interferon, Immunology, 157, 448–461.Google Scholar
  44. 44.
    Altstaedt, J., Kirchner, H., and Rink, L. (1996) Cytokine production of neutrophils is limited to interleukin-8, Immunology, 89, 563–568.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Netea, M. G., Nold-Petry, C. A., Nold, M. F., Joosten, L. A. B., Opitz, B., van der Meer, J. H. M., van de Veerdonk, F. L., Ferwerda, G., Heinhuis, B., Devesa, I., Funk, C. J., Mason, R. J., Kullberg, B. J., Rubartelli, A., Van der Meer, J. W. M., and Dinarello, C. A. (2009) Differential requirement for the activation of the inflammasome for proceßsing and release of IL-1ß in monocytes and macrophages, Blood, 113, 2324–2335.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cohen, J. (2002) Immunopathogenesis of sepsis, Nature, 420, 885–892.CrossRefPubMedGoogle Scholar
  47. 47.
    Jenkins, J. K., Malyak, M., and Arend, W. P. (1994) The effects of interleukin-10 on interleukin-1 receptor antagonist and interleukin-1ß production in human monocytes and neutrophils, Lymphokine Cytokine Res., 13, 47–54.PubMedGoogle Scholar
  48. 48.
    Carpintero, R., Brandt, K., Gruaz, L., and Burger, D. (2014) Interleukin-1ß production in human monocytes/macrophages is differentially regulated by Mek1 upon sterile and infectious inflammatory conditions, SOJ Immunol., 2, 7.Google Scholar
  49. 49.
    Ethuin, F., Gerard, B., Benna, J. E., Boutten, A., Gougereot-Pocidalo, M.-A., Jacob, L., and Chollet-Martin, S. (2004) Human neutrophils produce interferon gamma upon stimulation by interleukin-12, Lab. Invest., 84, 1363–1371.CrossRefPubMedGoogle Scholar
  50. 50.
    Kraaij, M. D., Vereyken, E. J. F., Leenen, P. J. M., van den Bosch, T. P. P., Rezaee, F., Betjes, M. G. H., Baan, C. C., and Rowshani, A. T. (2014) Human monocytes produce interferon-gamma upon stimulation with LPS, Cytokine, 67, 7–12.CrossRefPubMedGoogle Scholar
  51. 51.
    Kanevskiy, L. M., Telford, W. G., Sapozhnikov, A. M., and Kovalenko, E. T. (2013) Lipopolysaccharide induces IFN-? production in human NK cells, Front. Immunol., 4, 11.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Schindler, R., Mancilla, J., Endres, S., Ghorbani, R., Clark, S. C., and Dinarello, C. A. (1990) Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF, Blood, 75, 40–47.PubMedGoogle Scholar
  53. 53.
    Liu, J., Li, X., Yue, Y., Li, J., He, T., and He, Y. (2005) The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils, Cell. Mol. Immunol., 2, 455–460.PubMedGoogle Scholar
  54. 54.
    Agarwal, S., Piesco, N. P., Johns, L. P., and Riccelli, A. E. (1995) Differential expression of IL-1β, TNF-α, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes, J. Dent. Res., 74, 1057–1065.CrossRefPubMedGoogle Scholar
  55. 55.
    Sharif, O., Bolshakov, V. N., Raines, S., Newham, P., and Perkins, N. D. (2007) Transcriptional profiling of the LPS induced NF-?B response in macrophages, BMC Immunol., 8, 1.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Verstrepen, L., Bekaert, T., Chau, T.-L., Tavernier, J., Chariot, A., and Beyaert, R. (2008) TLR-4, IL-1R and TNF-R signaling to NF-?B: variations on a common theme, Cell. Mol. Life Sci., 65, 2964–2978.CrossRefPubMedGoogle Scholar
  57. 57.
    Scheller, J., Chalaris, A., Schmidt-Arras, D., and Rose-John, S. (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6, Biochim. Biophys. Acta, 1813, 878–888.CrossRefPubMedGoogle Scholar
  58. 58.
    Matera, G., Liberto, M. C., Quirino, A., Barreca, G. S., Lamberti, A. G., Iannone, M., Mancuso, E., Palma, E., Cufari, F. A., Rotiroti, D., and Foca, A. (2003) Bartonella quintana lipopolysaccharide effects on leukocytes, CXC chemokines and apoptosis: a study on the human whole blood and a rat model, Int. Immunopharmacol., 3, 853–864.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. S. Kabanov
    • 1
    Email author
  • D. A. Serov
    • 1
  • S. V. Zubova
    • 1
  • S. V. Grachev
    • 1
  • I. R. Prokhorenko
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations