Biochemistry (Moscow)

, Volume 81, Issue 3, pp 242–248 | Cite as

Effect of thrombin inhibitors on positive feedback in the coagulation cascade

  • N. B. UstinovEmail author
  • E. G. Zav’yalova
  • A. M. Kopylov


The coagulation cascade is a series of sequential reactions of limited proteolysis of protein factors resulting in generation of thrombin. Thrombin mediates both positive and negative feedback in regulating this cascade by taking part in activation of several factors. Some thrombin inhibitors, by affecting positive feedback, inhibit generation of thrombin itself. In the current study, we used two thrombin inhibitors: argatroban, a low molecular weight reversible competitive inhibitor that binds to the active site, and bivalirudin, a bivalent oligopeptide that blocks the active site and binding center of protein substrates (exosite I). Appearance rate and total amount of thrombin were measured in a thrombin generation assay (TGA) using a fluorescent substrate. We found that argatroban slows the appearance of thrombin and lowers its amount. Bivalirudin also slows appearance of thrombin, but it does not decrease its amount, perhaps because the region being bound to the active site undergoes hydrolysis so that the inhibitor stops binding to thrombin. Many reactions of the coagulation cascade proceed on the surface of phospholipid micelles (PLMs). In the case of argatroban, PLMs do not affect the results of the TGA, whereas for bivalirudin they lower its inhibitory activity. It seems that PLMs stabilize protein complexes (wherein thrombin exosite I is hindered) mediating positive feedback in the coagulation cascade, e.g. complexes of thrombin with factor V and VIII.

Key words

thrombin thrombin generation assay argatroban bivalirudin 





coagulation factors II/V/VII/VIII/IX/X/XI/XII/XIII (activated)


phospholipid micelles


thrombin generation assay


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Macfarlane, R. G. (1964) An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier, Nature, 202, 498–499.CrossRefPubMedGoogle Scholar
  2. 2.
    Davie, E. W. (2003) A brief historical review of the water-fall/cascade of blood coagulation, J. Biol. Chem., 278, 50819–50832.CrossRefPubMedGoogle Scholar
  3. 3.
    Jackson, C. M., and Nemerson, Y. (1980) Blood coagulation, Ann. Rev. Biochem., 49, 765–811.CrossRefPubMedGoogle Scholar
  4. 4.
    Page, M. J., and Di Cera, E. (2008) Serine peptidases: classification, structure and function, Cell. Mol. Life Sci., 65, 1220–1236.CrossRefPubMedGoogle Scholar
  5. 5.
    Suttie, J. W., and Jackson, C. M. (1977) Prothrombin structure, activation, and biosynthesis, Physiol. Rev., 57, 1–70.PubMedGoogle Scholar
  6. 6.
    Myles, T., Yun, T. H., Hall, S. W., and Leung, L. L. (2001) An extensive interaction interface between thrombin and factor V is required for factor V activation, J. Biol. Chem., 276, 25143–25149.CrossRefPubMedGoogle Scholar
  7. 7.
    Myles, T., Yun, T. H., and Leung, L. L. (2002) Structural requirements for the activation of human factor VIII by thrombin, Blood, 100, 2820–2826.CrossRefPubMedGoogle Scholar
  8. 8.
    Von dem Borne, P. A., Meijers, J. C., and Bouma, B. N. (1995) Feedback activation of factor XI by thrombin in plasma results in additional formation of thrombin that protects fibrin clots from fibrinolysis, Blood, 86, 3035–3042.Google Scholar
  9. 9.
    Sadasivan, C., and Yee, V. C. (2000) Interaction of the factor XIII activation peptide with α-thrombin crystal structure of its enzyme–substrate analog complex, J. Biol. Chem., 275, 36942–36948.CrossRefPubMedGoogle Scholar
  10. 10.
    Dahlback, B., and Villoutreix, B. O. (2005) The anticoagulant protein C pathway, FEBS Lett., 579, 3310–3316.CrossRefPubMedGoogle Scholar
  11. 11.
    Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S. R., and Hofsteenge, J. (1989) The refined 1.9 Å crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the TyrPro-Pro-Trp insertion segment, EMBO J., 8, 3467.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Fenton, J. W., Olson, T. A., Zabrinski, M. P., and Wilner, G. D. (1988) Anion-binding exosite of human alpha-thrombin and fibrin(ogen) recognition, Biochemistry, 27, 7106–7112.CrossRefPubMedGoogle Scholar
  13. 13.
    Bjork, I., and Lindahl, U. (1982) Mechanism of the anti-coagulant action of heparin, Mol. Cell. Biochem., 48, 161–182.CrossRefPubMedGoogle Scholar
  14. 14.
    Fenton, J. W., Witting, J. I., Pouliott, C., and Fareed, J. (1989) Thrombin anion-binding exosite interactions with heparin and various polyanions, Ann. N. Y. Acad. Sci., 556, 158–165.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee, C. J., and Ansell, J. E. (2011) Direct thrombin inhibitors, Brit. J. Clin. Pharmacol., 72, 581–592.CrossRefGoogle Scholar
  16. 16.
    Warkentin, T. E. (2004) Bivalent direct thrombin inhibitors: hirudin and bivalirudin, Best Pract. Res. Clin. Haematol., 17, 105–125.CrossRefPubMedGoogle Scholar
  17. 17.
    Berry, C. N., Girardot, C., Lecoffre, C., and Lunven, C. (1994) Effects of the synthetic thrombin inhibitor argatroban on fibrin-or clot-incorporated thrombin: comparison with heparin and recombinant hirudin, Thromb. Haemost., 72, 381–386.PubMedGoogle Scholar
  18. 18.
    Romisch, J., Diehl, K. H., Hoffmann, D., Krahl-Mateblowski, U., Reers, M., Stuber, W., and Paques, E. P. (1993) Comparison of in vitro and in vivo properties of rhirudin (HBW 023) and a synthetic analogous peptide, Pathophysiol. Haemost. Thromb., 23, 249–258.CrossRefGoogle Scholar
  19. 19.
    Kikumoto, R., Tamao, Y., Tezuka, T., Tonomura, S., Hara, H., Ninomiya, K., and Okamoto, S. (1984) Selective inhibition of thrombin by (2R,4R)-4-methyl-1-[N2-[1,2,3,4-tetrahydro-8-quinolinyl)sulfonyl]-L-arginyl]-2-piperidinecarboxylic acid, Biochemistry, 23, 85–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Maraganore, J. M., Bourdon, P., Jablonski, J., Ramachandran, K. L., and Fenton, J. D. (1990) Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin, Biochemistry, 29, 7095–7101.CrossRefPubMedGoogle Scholar
  21. 21.
    Robson, R., White, H., Aylward, P., and Frampton, C. (2002) Bivalirudin pharmacokinetics and pharmacody-namics: effect of renal function, dose, and gender, J. Clin. Pharm. Ther., 71, 433–439.CrossRefGoogle Scholar
  22. 22.
    Hemker, H. C., Al Dieri, R., De Smedt, E., and Beguin, S. (2006) Thrombin generation, a function test of the haemostatic-thrombotic system, Thromb. Haemost., 96, 553–561.PubMedGoogle Scholar
  23. 23.
    Baglin, T. (2005) The measurement and application of thrombin generation, Brit. J. Haematol., 130, 653–661.CrossRefGoogle Scholar
  24. 24.
    Fischer, A. M., Tapon-Bretaudiere, J., Bros, A., and Josso, F. (1981) Respective roles of antithrombin III and alpha 2 macroglobulin in thrombin inactivation, Thromb. Haemost., 45, 51–54.PubMedGoogle Scholar
  25. 25.
    Nagashima, H. (2002) Studies on the different modes of action of the anticoagulant protease inhibitors DX-9065a and argatroban I. Effects on thrombin generation, J. Biol. Chem., 277, 50439–50444.CrossRefPubMedGoogle Scholar
  26. 26.
    Tanaka, K. A., Szlam, F., Sun, H. Y., Taketomi, T., and Levy, J. H. (2007) Thrombin generation assay and vis-coelastic coagulation monitors demonstrate differences in the mode of thrombin inhibition between unfractionated heparin and bivalirudin, Anesth. Analg., 105, 933–939.CrossRefPubMedGoogle Scholar
  27. 27.
    Nesheim, M. E., Taswell, J. B., and Mann, K. G. (1979) The contribution of bovine factor V and factor Va to the activity of prothrombinase, J. Biol. Chem., 254, 10952–10962.PubMedGoogle Scholar
  28. 28.
    Huntington, J. A. (2005) Molecular recognition mechanisms of thrombin, J. Thromb. Haemost., 3, 1861–1872.CrossRefPubMedGoogle Scholar
  29. 29.
    Yun, T. H., Baglia, F. A., Myles, T., Navaneetham, D., Lopez, J. A., Walsh, P. N., and Leung, L. L. (2003) Thrombin activation of factor XI on activated platelets requires the interaction of factor XI and platelet glycoprotein Iba with thrombin anion-binding exosites I and II, respectively, J. Biol. Chem., 278, 48112–48119.CrossRefPubMedGoogle Scholar
  30. 30.
    Witting, J. I., Bourdon, P., Brezniak, D. V., Maragnore, J. M., and Fenton, J. W. (1992) Thrombin-specific inhibition by and slow cleavage of hirulog-1, Biochem. J., 283, 737–743.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cappiello, M., Vilardo, P. G., Del Corso, A., and Mura, U. (1998) Hirunorms, novel hirudin-like direct thrombin inhibitors, Gen. Pharmacol. Vasc. Syst., 30, 565–568.CrossRefGoogle Scholar
  32. 32.
    DiMaio, J., Gibbs, B., Lefebvre, J., Konishi, Y., Munn, D., Yue, S. Y., and Hornberger, W. (1992) Synthesis of a homologous series of ketomethylene arginyl pseudodipep-tides and application to low molecular weight hirudin-like thrombin inhibitors, J. Med. Chem., 35, 3331–3341.CrossRefPubMedGoogle Scholar
  33. 33.
    Macedo-Ribeiro, S., Bode, W., Huber, R., Quinn-Allen, M. A., Kim, S. W., Ortel, T. L., and Fuentes-Prior, P. (1999) Crystal structures of the membrane-binding C2 domain of human coagulation factor V, Nature, 402, 434–439.CrossRefPubMedGoogle Scholar
  34. 34.
    Pratt, K. P., Shen, B. W., Takeshima, K., Davie, E. W., Fujikawa, K., and Stoddard, B. L. (1999) Structure of the C2 domain of human factor VIII at 1.5 Å resolution, Nature, 402, 439–442.CrossRefPubMedGoogle Scholar
  35. 35.
    Sunnerhagen, M., Forsen, S., Hoffren, A. M., Drakenberg, T., Teleman, O., and Stenflo, J. (1995) Structure of the Ca2+-free GLA domain sheds light on membrane binding of blood coagulation proteins, Nat. Struct. Mol. Biol., 2, 504–509.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. B. Ustinov
    • 1
    Email author
  • E. G. Zav’yalova
    • 1
    • 2
  • A. M. Kopylov
    • 1
    • 2
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Apto-pharm LLCMoscowRussia

Personalised recommendations