Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 3, pp 233–241 | Cite as

Interaction of nucleotide excision repair protein XPC—RAD23B with DNA containing benzo[a]pyrene-derived adduct and apurinic/apyrimidinic site within a cluster

  • L. V. Starostenko
  • E. A. Maltseva
  • N. A. Lebedeva
  • P. E. Pestryakov
  • O. I. Lavrik
  • N. I. RechkunovaEmail author
Article

Abstract

The combined action of reactive metabolites of benzo[a]pyrene (B[a]P) and oxidative stress can lead to cluster-type DNA damage that includes both a bulky lesion and an apurinic/apyrimidinic (AP) site, which are repaired by the nucleotide and base excision repair mechanisms — NER and BER, respectively. Interaction of NER protein XPC—RAD23B providing primary damage recognition with DNA duplexes containing a B[a]P-derived residue linked to the exocyclic amino group of a guanine (BPDE-N2-dG) in the central position of one strand and AP site in different positions of the other strand was analyzed. It was found that XPC—RAD23B crosslinks to DNA containing (+)-trans-BPDE-N2-dG more effectively than to DNA containing cis-isomer, independently of the AP site position in the opposite strand; protein affinity to DNA containing one of the BPDE-N2-dG isomers depends on the AP site position in the opposite strand. The influence of XPC—RAD23B on hydrolysis of an AP site clustered with BPDE-N2-dG catalyzed by the apurinic/apyrimidinic endonuclease 1 (APE1) was examined. XPC—RAD23B was shown to stimulate the endonuclease and inhibit the 3′–5′ exonuclease activity of APE1. These data demonstrate the possibility of cooperation of two proteins belonging to different DNA repair systems in the repair of cluster-type DNA damage.

Key words

protein factors of nucleotide excision repair benzo[a]pyrene derivatives apurinic/apyrimidinic site cluster-type DNA damage affinity labeling DNA–protein complexes 

Abbreviations

APE1

apurinic/apyrimidinic endonuclease 1

AP site

apurinic/apyrimidinic site

B[a]P

benzo[a]pyrene

BER

base excision repair

BPDE-N2-dG

benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-N2-deoxyguanosine adduct (in DNA)

NER

nucleotide excision repair

PAHs

polycyclic aromatic hydrocarbons

UDG

uracil-DNA-glycosylase

XPA

xeroderma pigmentosum factor of complementation group A

XPC—RAD23B

xeroderma pigmentosum factor of complementation group C in complex with homolog of yeast Rad23 protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verma, N., Pink, M., Rettenmeier, A. W., and Schmitz-Spanke, S. (2012) Review on proteomic analyses of benzo[a]pyrene toxicity, Proteomics, 12, 1731–1755.CrossRefPubMedGoogle Scholar
  2. 2.
    Alexandrov, K., Rojas, M., and Satarug, S. (2010) The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation, Toxicol. Lett., 198, 63–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Skosareva, L. V., Lebedeva, N. A., Lavrik, O. I., and Rechkunova, N. I. (2013) Repair of bulky DNA damages — derivatives of polycyclic aromatic hydrocarbons, Mol. Biol. (Moscow), 47, 731–742.CrossRefGoogle Scholar
  4. 4.
    Braithwaite, E., Wu, X., and Wang, Z. (1998) Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro, Carcinogenesis, 19, 1239–1246.CrossRefPubMedGoogle Scholar
  5. 5.
    Mocquet, V., Kropachev, K., Kolbanovskiy, M., Kolbanovskiy, A., Tapias, A., Cai, Y., Broyde, S., Geacintov, N. E., and Egly, J. M. (2007) The human DNA repair factor XPC—HR23B distinguishes stereoisomeric benzo[a]pyrenyl–DNA lesions, EMBO J., 26, 2923–2932.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Baskunov, V. B., Subach, F. V., Kolbanovskiy, A., Kolbanovskiy, M., Eremin, S. A., Johnson, F., Bonala, R., Geacintov, N. E., and Gromova, E. S. (2005) Effects of benzo[a]pyrene–deoxyguanosine lesions on DNA methylation catalyzed by EcoRII DNA methyltransferase and on DNA cleavage effected by EcoRII restriction endonuclease, Biochemistry, 44, 1054–1066.CrossRefPubMedGoogle Scholar
  7. 7.
    Subach, O. M., Baskunov, V. B., Darii, M. V., Maltseva, D. V., Alexandrov, D. A., Kirsanova, O. V., Kolbanovskiy, A., Kolbanovskiy, M., Johnson, F., Bonala, R., Geacintov, N. E., and Gromova, E. S. (2006) Impact of benzo[a]pyrene–2'-deoxyguanosine lesions on methylation of DNA by SssI and HhaI DNA methyltransferases, Biochemistry, 45, 6142–6159.CrossRefPubMedGoogle Scholar
  8. 8.
    Subach, O. M., Maltseva, D. V., Shastry, A., Kolbanovskiy, A., Klimasauskas, S., Geacintov, N. E., and Gromova, E. S. (2007) The stereochemistry of benzo[a]pyrene–2-deoxyguanosine adducts affects DNA methylation by SssI and HhaI DNA methyltransferases, FEBS J., 274, 2121–2134.CrossRefPubMedGoogle Scholar
  9. 9.
    Minero, A. S., Lukashevich, O. V., Cherepanova, N. A., Kolbanovskiy, A., Geacintov, N. E., and Gromova, E. S. (2012) Probing murine methyltransferase Dnmt3a interactions with benzo[a]pyrene-modified DNA by fluorescence methods, FEBS J., 279, 3965–3980.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Buterin, T., Hess, M. T., Luneva, N., Geacintov, N. E., Amin, S., Kroth, H., Seidel, A., and Naegeli, H. (2000) Unrepaired fjord region polycyclic aromatic hydrocarbon–DNA adducts in ras codon 61 mutational hot spots, Cancer Res., 60, 1849–1856.PubMedGoogle Scholar
  11. 11.
    Gunz, D., Hess, M. T., and Naegeli, H. (1996) Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism, J. Biol. Chem., 271, 25089–25098.CrossRefPubMedGoogle Scholar
  12. 12.
    Isaacs, R. J., and Spielmann, H. P. (2004) A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility, DNA Repair (Amst.), 3, 455–464.CrossRefGoogle Scholar
  13. 13.
    Gates, K. S. (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals, Chem. Res. Toxicol., 22, 1747–1760.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sage, E., and Harrison, L. (2011) Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival, Mutat. Res., 711, 123–133.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sung, J. S., and Demple, B. (2006) Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA, FEBS J., 273, 1620–1629.CrossRefPubMedGoogle Scholar
  16. 16.
    Scharer, O. D. (2003) Chemistry and biology of DNA repair, Angew. Chem. Int. Ed. Engl., 42, 2946–2974.CrossRefPubMedGoogle Scholar
  17. 17.
    Skosareva, L. V., Lebedeva, N. A., Rechkunova, N. I., Kolbanovskiy, A., Geacintov, N. E., and Lavrik, O. I. (2012) Human DNA polymerase λ catalyzes lesion bypass across benzo[a]pyrene-derived DNA adduct during base excision repair, DNA Repair (Amst.), 11, 367–373.CrossRefGoogle Scholar
  18. 18.
    Starostenko, L. V., Rechkunova, N. I., Lebedeva, N. A., Kolbanovskiy, A., Geacintov, N. E., and Lavrik, O. I. (2014) Human DNA polymerases catalyze lesion bypass across benzo[a]pyrene-derived DNA adduct clustered with an abasic site, DNA Rep. (Amst.), 24, 1–9.CrossRefGoogle Scholar
  19. 19.
    Constant, J.-F., and Demeunynck, M. (2003) Design and studies of abasic site targeting drugs: new strategies for cancer chemotherapy, in Small Molecule DNA and RNA Binders. From Synthesis to Nucleic Acid Complexes (Demeunynck, M., Baily, C., and Wilson, W. D., eds.) Vol. 1, Wiley VCH, Verlag GmbH, Weinheim, pp. 247–277.Google Scholar
  20. 20.
    Sugasawa, K., Okamoto, T., Shimizu, Y., Masutani, C., Iwai, S., and Hanaoka, F. (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair, Genes Dev., 15, 507–521.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gillet, L. C., and Scharer, O. D. (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair, Chem. Rev., 106, 253–276.CrossRefPubMedGoogle Scholar
  22. 22.
    Maillard, O., Camenisch, U., Clement, F. C., Blagoev, K. B., and Naegeli, H. (2007) DNA repair triggered by sensors of helical dynamics, Trends Biochem. Sci., 32, 494–499.CrossRefPubMedGoogle Scholar
  23. 23.
    Maltseva, E. A., Rechkunova, N. I., Petruseva, I. O., Vermeulen, W., Scharer, O. D., and Lavrik, O. I. (2008) Crosslinking of nucleotide excision repair proteins with DNA containing photoreactive damages, Bioorg. Chem., 36, 77–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Skosareva, L. V., Lebedeva, N. A., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., and Lavrik, O. I. (2012) Interaction of nucleotide excision repair proteins with DNA containing bulky lesion and apurinic/apyrimidinic site, Biochemistry (Moscow), 77, 524–531.CrossRefGoogle Scholar
  25. 25.
    Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa K., and Hanaoka, F. (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein, Mol. Cell. Biol., 25, 5664–5674.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory Press, N. Y., pp. 10.2–10.70.Google Scholar
  27. 27.
    Reeves, D. A., Mu, H., Kropachev, K., Cai, Y., Ding, Sh., Kolbanovskiy, A., Kolbanovskiy, M., Chen, Y., Krzeminski, J., Amin, Sh., Patel, D. J., Broyde, S., and Geacintov, N. E. (2011) Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion–base stacking interactions, Nucleic Acids Res., 39, 8752–8764.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee, Y. C., Cai, Y., Mu, H., Broyde, S., Amin, S., Chen, X., Min, J. H., and Geacintov, N. E. (2014) The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: is there a correlation? DNA Repair (Amst.), 19, 55–63.CrossRefGoogle Scholar
  30. 30.
    Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., and Lavrik, O. I. (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair, J. Biol. Chem., 288, 10936–10947.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Petruseva, I. O., Tikhanovich, I. S., Chelobanov, B. P., and Lavrik, O. I. (2008) RPA repair recognition of DNA containing pyrimidines bearing bulky adducts, J. Mol. Recognit., 21, 154–162.CrossRefPubMedGoogle Scholar
  32. 32.
    Kosova, A. A., Khodyreva, S. N., and Lavrik, O. I. (2015) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with apurinic/apyrimidinic sites in DNA, Mutat. Res., 779, 46–57.CrossRefPubMedGoogle Scholar
  33. 33.
    Hadi, M. Z., Coleman, M. A., Fidelis, K., Mohrenweiser, H. W., and Wilson, D. M., 3rd (2000) Functional characterization of Ape1 variants identified in the human population, Nucleic Acids Res., 28, 3871–3879.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chou, K. M., and Cheng, Y. C. (2002) An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3' mispaired DNA, Nature, 415, 655–659.CrossRefPubMedGoogle Scholar
  35. 35.
    Sukhanova, M. V., Khodyreva, S. N., Lebedeva, N. A., Prasad, R., Wilson, S. H., and Lavrik, O. I. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity, Nucleic Acids Res., 33, 1222–1229.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shimizu, Y., Uchimura, Y., Dohmae, N., Saitoh, H., Hanaoka, F., and Sugasawa, K. (2010) Stimulation of DNA glycosylase activities by XPC protein complex: roles of protein–protein interactions, J. Nucleic Acids, pii: 805698.Google Scholar
  37. 37.
    Masuda, Y., Bennett, R. A., and Demple, B. (1998) Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product, J. Biol. Chem., 273, 30352–30359.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu, Z., Ding, S., Kropachev, K., Lei, J., Amin, S., Broyde, S., and Geacintov, N. E. (2015) Resistance to nucleotide excision repair of bulky guanine adducts opposite abasic sites in DNA duplexes and relationships between structure and function, PLoS One, 10, e0137124.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. V. Starostenko
    • 1
  • E. A. Maltseva
    • 1
  • N. A. Lebedeva
    • 1
    • 2
  • P. E. Pestryakov
    • 1
  • O. I. Lavrik
    • 1
    • 2
  • N. I. Rechkunova
    • 1
    • 2
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations