Biochemistry (Moscow)

, Volume 81, Issue 3, pp 224–232 | Cite as

Age-related changes in antioxidant and glutathione S-transferase enzyme activities in the Asian clam

  • J. VrankovićEmail author


Aging is accompanied by increased production of free oxygen radicals and impairment of normal cellular functions. The aim of this work was to provide preliminary data on age-related differences in the activities of antioxidant enzymes and phase II biotransformation enzyme glutathione S-transferase (GST) in a wild population of the Asian clam Corbicula fluminea. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and GST were assessed in visceral mass of four age classes (0+-, 1+-, 2+-, and 3+-year-old) of C. fluminea clams. Age-related changes were seen in antioxidant enzyme status: levels of total SOD (totSOD) (P < 0.05), MnSOD, and CuZnSOD (P < 0.05) activities increased progressively during aging from younger to older clams. Changes in CAT and GR activities with advancing age were found, the levels being the highest in age class II, then being lower in age classes III and IV (P < 0.05). Activities of GPX and GST were lower in the senescent individuals (2+- and 3+-year-old clams) compared with young individuals (0+- and 1+-year-old clams). Overall, the decline of glutathione-dependent enzyme activities, coupled with higher and lower activities of totSOD and CAT, respectively, as the individual grows older, may render the older animals more susceptible to oxidative stress. Data reported here are not intended to be exhaustive since they concern only age/size structure of the population at one locality, so more detailed studies on both the developmental stages and levels of antioxidant enzymes of this new alien species in Serbian rivers are required.

Key words

Asian clam antioxidant enzyme GST aging 





glutathione peroxidase


glutathione reductase


reduced glutathione


glutathione S-transferase


reactive oxygen species


superoxide dismutase


total superoxide dismutase (MnSOD + CuZnSOD)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B., and Gutteridge, J. M. C. (1999) Free Radicals in Biology and Medicine, 3rd Edn., Oxford University Press, Oxford, U.K.Google Scholar
  2. 2.
    Bodnar, A. G. (2009) Marine invertebrates as models for aging research, Exp. Gerontol., 44, 477–484.CrossRefPubMedGoogle Scholar
  3. 3.
    Livingstone, D. R., Garcia-Martinez, P., Michel, X., Narbonne, J. F., O’Hara, S., Ribera, D., and Winston, G. W. (1990) Oxyradical production as a pollution-mediated mechanism of toxicity in the common mussel Mytilus edulis L. and other molluscs, Funct. Ecol., 4, 415–424.CrossRefGoogle Scholar
  4. 4.
    Oberley, T. D., Swanlund, J. M., Zhang, H. J., and Kregel, K. C. (2008) Aging results in increased autophagy of mito-chondria and protein nitration in rat hepatocytes following heat stress, J. Histochem. Cytochem., 56, 615–627.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Van der Oost, R., Beyer, J., and Vermeulen, N. P. E. (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review, Environ. Toxicol. Pharmacol., 13, 57–149.CrossRefPubMedGoogle Scholar
  6. 6.
    Correia, A. D., Costa, M. H., Luis, O. J., and Livingstone, D. R. (2003) Age-related changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in whole body Gammarus locusta (Crustacea: Amphipoda), J. Exp. Mar. Biol. Ecol., 289, 83–101.CrossRefGoogle Scholar
  7. 7.
    Pascoli, F., Negrato, E., Di Giancamillo, A., Bertotto, D., Domeneghini, C., Simontacchi, C., Mutinelli, F., and Radaelli, G. (2011) Evaluation of oxidative stress biomarkers in Zosterisessor ophiocephalus from the Venice Lagoon, Italy, Aquat. Toxicol., 101, 512–520.CrossRefGoogle Scholar
  8. 8.
    Cheung, C. C. C., Zheng, G. J., Li, A. M. Y., Richardson, B. J., and Lam, P. K. S. (2001) Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis, Aquat. Toxicol., 52, 189–203.CrossRefPubMedGoogle Scholar
  9. 9.
    Lima, I., Moreira, S. M., Rendon-Von Osten, J., Soares, A. M., and Guilhermino, L. (2007) Biochemical responses of the marine mussel Mytilus galloprovincialis to petrochemical environmental contamination along the North-Western coast of Portugal, Chemosphere, 66, 1230–1242.CrossRefPubMedGoogle Scholar
  10. 10.
    Luchmann, K. H., Mattos, J. J., Siebert, M. N., Granucci, N., Dorrington, T. S., Bicego, M. C., Taniguchi, S., Sasaki, S. T., Daura-Jorge, F. G., and Bainy, A. C. (2011) Biochemical biomarkers and hydrocarbons concentrations in the mangrove oyster Crassostrea brasiliana following exposure to diesel fuel water-accommodated fraction, Aquat. Toxicol., 105, 652–660.CrossRefPubMedGoogle Scholar
  11. 11.
    Fernández, C., San Miguel, E., and Fernández-Briera, A. (2009) Superoxide dismutase and catalase: tissue activities and relation with age in the long-lived species Margaritifera margaritifera, Biol. Res., 42, 57–68.PubMedGoogle Scholar
  12. 12.
    Philipp, E. E. R., and Abele, D. (2009) Masters of longevity: lessons from long-lived bivalves — a mini-review, Gerontology, 56, 55–65.CrossRefPubMedGoogle Scholar
  13. 13.
    Vranković, J., and Slavić, M. (2015) Biomarker responses in Corbicula fluminea to the presence of dioxin-like poly-chlorinated biphenyls and seasonal changes, Ecol. Indic., 48, 99–106.CrossRefGoogle Scholar
  14. 14.
    Vranković, J. (2015) Environmental impact on the antioxidant responses in Corbicula fluminea (Bivalvia: Veneroida: Corbiculidae) from the Danube River, Ital. J. Zool., 82, 378–386.CrossRefGoogle Scholar
  15. 15.
    Sousa, R., Antunes, C., and Guilhermino, L. (2008) Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview, Ann. Limnol. Int. J. Limnol., 4, 85–94.CrossRefGoogle Scholar
  16. 16.
    Dresler, P., and Cory, R. (1980) The Asiatic clam, Corbicula fluminea (Müller), in the tidal Potomac River, Maryland, Estuaries, 3, 150–151.CrossRefGoogle Scholar
  17. 17.
    Rossi, M. A., Cecchini, G., and Dianzani, M. U. (1983) Glutathione peroxidase, glutathione reductase and glutathione transferase in two different hepatomas and in normal liver, IRCS Med. Sci. Biochem., 11, 805.Google Scholar
  18. 18.
    Takada, Y., Noguchi, T., Okabe, T., and Kayiyoma, M. (1982) Superoxide dismutase in various tissues from rabbits bearing the Vx-2 carcinoma in the maxillary sinus, Cancer Res., 42, 4233–4235.PubMedGoogle Scholar
  19. 19.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  20. 20.
    Misra, H. P., and Fridovich, I. (1972) The role of superoxide anion in the autooxidation of epinephrine and a sample assay for superoxide dismutase, J. Biol. Chem., 247, 3170–3175.PubMedGoogle Scholar
  21. 21.
    Beutler, E. (1982) Catalase, in Red Cell Metabolism, a Manual of Biochemical Methods (Beutler, E., ed.) Grune and Stratton, New York, pp. 105–106.Google Scholar
  22. 22.
    Tamura, M., Oschino, N., and Chance, B. (1982) Some characteristics of hydrogen and alkyl-hydroperoxides metabolizing systems in cardiac tissue, J. Biochem., 92, 1019–1031.PubMedGoogle Scholar
  23. 23.
    Glatzle, D., Vuilleumier, J. P., Weber, F., and Decker, K. (1974) Glutathione reductase test with whole blood a convenient procedure for the assessment of the riboflavin status in humans, Experientia, 30, 665–667.CrossRefPubMedGoogle Scholar
  24. 24.
    Habig, W. H., Pabst, M. J., and Jakoby, W. B. (1974) Glutathione S-transferase, J. Biol. Chem., 249, 7130–7139.PubMedGoogle Scholar
  25. 25.
    Kregel, K. C., and Zhang, H. (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations, Am. J. Physiol. Regul. Integr. Comp. Physiol., 292, 18–36.CrossRefGoogle Scholar
  26. 26.
    Livingstone, D. R. (2001) Contaminated-stimulated reactive oxygen species production and oxidative damage in aquatic organisms, Mar. Pollut. Bull., 42, 656–666.CrossRefPubMedGoogle Scholar
  27. 27.
    Inal, M. E., Kanbak, G., and Sunal, E. (2001) Antioxidant enzyme activities and malondialdehyde levels related to aging, Clin. Chim. Acta, 305, 75–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Philipp, E., Brey, T., Heilmayer, O., Abele, D., and Pörtner, H. O. (2006) Physiological aging in a polar and a temperate swimming scallop, Mar. Ecol. Prog. Ser., 307, 187–198.CrossRefGoogle Scholar
  29. 29.
    Ivanina, A. V., Sokolova, I. M., and Sukhotin, A. A. (2008) Oxidative stress and expression of chaperones in aging mollusks, Comp. Biochem. Physiol., 150, 53–61.CrossRefGoogle Scholar
  30. 30.
    Basova, L., Begum, S., Strahl, J., Sukhotin, A., Brey, T., Philipp, E., and Abele, D. (2012) Age-dependent patterns of antioxidants in Arctica islandica from six regionally separate populations with different life spans, Aquat. Biol., 14, 141–152.CrossRefGoogle Scholar
  31. 31.
    Mourente, G., and Diaz-Salvago, E. (1999) Characterization of antioxidant systems, oxidation status and lipids in brain of wild-caught size-class distributed Aristeus antennatus (Risso, 1816) Crustacea, Decapoda, Comp. Biochem. Physiol., 124, 405–416.CrossRefGoogle Scholar
  32. 32.
    Livingstone, D. R., Lips, F., Garcia-Martinez, P., and Pipe, R. K. (1992) Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis, Mar. Biol., 112, 265–276.CrossRefGoogle Scholar
  33. 33.
    Viarengo, A., Canesi, L., Pertica, M., Livingstone, D. R., and Orunesu, M. (1991) Age-related lipid peroxidation in the digestive gland of mussels: the role of antioxidant defense systems, Experientia, 47, 454–457.CrossRefGoogle Scholar
  34. 34.
    Sukhotin, A. A., Abele, D., and Pörtner, H. O. (2002) Growth, metabolism and lipid peroxidation in Mytilus edulis: age and size effects, Mar. Ecol. Prog. Ser., 226, 223–234.CrossRefGoogle Scholar
  35. 35.
    Zielinski, S., and Pörtner, H. O. (2000) Oxidative stress and antioxidative defense in cephalopods: a function of metabolic rate or age? Comp. Biochem. Physiol., 125, 147–160.CrossRefGoogle Scholar
  36. 36.
    Sukhotin, A. A., and Pörtner, H. O. (2001) Age-dependence of metabolism in mussels Mytilus edulis (L.) from the White Sea, J. Exp. Mar. Biol. Ecol., 257, 53–72.CrossRefPubMedGoogle Scholar
  37. 37.
    Abele, D., Strahl, J., Brey, T., and Philipp, E. (2008) Imperceptible senescence: aging in the ocean quahog Arctica islandica, Free Radic. Res., 42, 474–480.CrossRefPubMedGoogle Scholar
  38. 38.
    Borković, S. S., Šaponjić, J. S., Pavlović, S. Z., Blagojević, D. P., Milošević, S. M., Kovačević, T. B., Radojičić, R. M., Spasić, M. B., Žikić, R. V., and Sačić, Z. S. (2005) The activity of antioxidant defense enzymes in the mussel Mytilus galloprovincialis from the Adriatic Sea, Comp. Biochem. Physiol., 141, 366–374.CrossRefGoogle Scholar
  39. 39.
    Cheng, C. H., Yang, F. F., Ling, R. Z., Liao, S. A., Miao, Y. T., Ye, C. X., and Wang, A. L. (2015) Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus), Aquat. Toxicol., 164, 61–71.CrossRefPubMedGoogle Scholar
  40. 40.
    Rudneva, I. I. (1999) Antioxidant system of Black Sea animals in early development, Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 122, 265–271.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute for Biological Research “Siniša Stanković”, Department of EcologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations