Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 3, pp 213–223 | Cite as

Structure and functions of linker histones

  • A. V. Lyubitelev
  • D. V. NikitinEmail author
  • A. K. Shaytan
  • V. M. StuditskyEmail author
  • M. P. Kirpichnikov
Review

Abstract

Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions — from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

Key words

linker histones chromatin structure eukaryotic transcription 

Abbreviations

NMR

nuclear magnetic resonance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution, Nature, 389, 251–260.CrossRefPubMedGoogle Scholar
  2. 2.
    Meyer, S., Becker, N. B., Syed, S. H., Goutte-Gattat, D., Shukla, M. S., Hayes, J. J., Angelov, D., Bednar, J., Dimitrov, S., and Everaers, R. (2011) From crystal and NMR structures, footprints and cryoelectron micrographs to large and soft structures: nanoscale modeling of the nucleosomal stem, Nucleic Acids Res., 39, 9139–9154.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Syed, S. H., Goutte-Gattat, D., Becker, N., Meyer, S., Shukla, M. S., Hayes, J. J., Everaers, R., Angelov, D., Bednar, J., and Dimitrov, S. (2010) Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome, Proc. Natl. Acad. Sci. USA, 107, 9620–9625.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cui, F., and Zhurkin, V. B. (2009) Distinctive sequence patterns in metazoan and yeast nucleosomes: implications for linker histone binding to AT-rich and methylated DNA, Nucleic Acids Res., 37, 2818–2829.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fan, L., and Roberts, V. A. (2006) Complex of linker histone H5 with the nucleosome and its implications for chromatin packing, Proc. Natl. Acad. Sci. USA, 103, 8384–8389.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Clark, K. L., Halay, E. D., Lai, E., and Burley, S. K. (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5, Nature, 364, 412–420.CrossRefPubMedGoogle Scholar
  7. 7.
    Ramakrishnan, V., Finch, J. T., Graziano, V., Lee, P. L., and Sweet, R. M. (1993) Crystal structure of globular domain of histone H5 and its implications for nucleosome binding, Nature, 362, 219–223.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhou, B. R., Feng, H., Kato, H., Dai, L., Yang, Y., Zhou, Y., and Bai, Y. (2013) Structural insights into the histone H1–nucleosome complex, Proc. Natl. Acad. Sci. USA, 110, 19390–19395.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gajiwala, K. S., and Burley, S. K. (2000) Winged helix proteins, Curr. Opin. Struct. Biol., 10, 110–116.CrossRefPubMedGoogle Scholar
  10. 10.
    Happel, N., Warneboldt, J., Hanecke, K., Haller, F., and Doenecke, D. (2009) H1 subtype expression during cell proliferation and growth arrest, Cell Cycle, 8, 2226–2232.CrossRefPubMedGoogle Scholar
  11. 11.
    Kasinsky, H. E., Lewis, J. D., Dacks, J. B., and Ausio, J. (2001) Origin of H1 linker histones, FASEB J., 15, 34–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Brown, D. T., Izard, T., and Misteli, T. (2006) Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo, Nat. Struct. Mol. Biol., 13, 250–255.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Crane-Robinson, C. (1997) Where is the globular domain of linker histone located on the nucleosome? Trends Biochem. Sci., 22, 75–77.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou, Y. B., Gerchman, S. E., Ramakrishnan, V., Travers, A., and Muyldermans, S. (1998) Position and orientation of the globular domain of linker histone H5 on the nucleosome, Nature, 395, 402–405.CrossRefPubMedGoogle Scholar
  15. 15.
    Wong, H., Victor, J. M., and Mozziconacci, J. (2007) An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length, PLoS One, 2, e877.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    George, E. M., Izard, T., Anderson, S. D., and Brown, D. T. (2010) Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0), J. Biol. Chem., 285, 20891–20896.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou, B. R., Jiang, J., Feng, H., Ghirlando, R., Xiao, T. S., and Bai, Y. (2015) Structural mechanisms of nucleosome recognition by linker histones, Mol. Cell, 59, 628–638.CrossRefPubMedGoogle Scholar
  18. 18.
    Song, F., Chen, P., Sun, D., Wang, M., Dong, L., Liang, D., Xu, R. M., Zhu, P., and Li, G. (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units, Science, 344, 376–380.CrossRefPubMedGoogle Scholar
  19. 19.
    Bohm, L., and Mitchell, T. C. (1985) Sequence conservation in the N-terminal domain of histone H1, FEBS Lett., 193, 1–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Kuzmichev, A., Jenuwein, T., Tempst, P., and Reinberg, D. (2004) Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3, Mol. Cell, 14, 183–193.CrossRefPubMedGoogle Scholar
  21. 21.
    Vila, R., Ponte, I., Collado, M., Arrondo, J. L., Jimenez, M. A., Rico, M., and Suau, P. (2001) DNA-induced alpha-helical structure in the NH2-terminal domain of histone H1, J. Biol. Chem., 276, 46429–46435.CrossRefPubMedGoogle Scholar
  22. 22.
    Vila, R., Ponte, I., Jimenez, M. A., Rico, M., and Suau, P. (2002) An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: a CD and NMR study, Protein Sci., 11, 214–220.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Happel, N., and Doenecke, D. (2009) Histone H1 and its isoforms: contribution to chromatin structure and function, Gene, 431, 1–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Roque, A., Iloro, I., Ponte, I., Arrondo, J. L., and Suau, P. (2005) DNA-induced secondary structure of the carboxyl-terminal domain of histone H1, J. Biol. Chem., 280, 32141–32147.CrossRefPubMedGoogle Scholar
  25. 25.
    Roque, A., Ponte, I., and Suau, P. (2009) Role of charge neutralization in the folding of the carboxy-terminal domain of histone H1, J. Phys. Chem. B, 113, 12061–12066.CrossRefPubMedGoogle Scholar
  26. 26.
    Fang, H., Clark, D. J., and Hayes, J. J. (2012) DNA and nucleosomes direct distinct folding of a linker histone H1 C-terminal domain, Nucleic Acids Res., 40, 1475–1484.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Subirana, J. A. (1990) Analysis of the charge distribution in the C-terminal region of histone H1 as related to its interaction with DNA, Biopolymers, 29, 1351–1357.CrossRefPubMedGoogle Scholar
  28. 28.
    Lu, X., and Hansen, J. C. (2004) Identification of specific functional subdomains within the linker histone H10 C-terminal domain, J. Biol. Chem., 279, 8701–8707.CrossRefPubMedGoogle Scholar
  29. 29.
    Hansen, J. C., Lu, X., Ross, E. D., and Woody, R. W. (2006) Intrinsic protein disorder, amino acid composition, and histone terminal domains, J. Biol. Chem., 281, 1853–1856.CrossRefPubMedGoogle Scholar
  30. 30.
    Lu, X., Hamkalo, B., Parseghian, M. H., and Hansen, J. C. (2009) Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder, Biochemistry, 48, 164–172.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yasuda, H., Mueller, R. D., Logan, K. A., and Bradbury, E. M. (1986) Identification of histone H1(0) in Physarum polycephalum. Its high level in the plasmodial stage increases in amount and phosphorylation in the sclerotial stage, J. Biol. Chem., 261, 2349–2354.PubMedGoogle Scholar
  32. 32.
    Nagel, S., and Grossbach, U. (2000) Histone H1 genes and histone gene clusters in the genus Drosophila, J. Mol. Evol., 51, 286–298.PubMedGoogle Scholar
  33. 33.
    Khochbin, S. (2001) Histone H1 diversity: bridging regulatory signals to linker histone function, Gene, 271, 1–12.CrossRefPubMedGoogle Scholar
  34. 34.
    Th’ng, J. P., Sung, R., Ye, M., and Hendzel, M. J. (2005) H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain, J. Biol. Chem., 280, 27809–27814.CrossRefPubMedGoogle Scholar
  35. 35.
    Orrego, M., Ponte, I., Roque, A., Buschati, N., Mora, X., and Suau, P. (2007) Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin, BMC Biol., 5, 22.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Talasz, H., Sapojnikova, N., Helliger, W., Lindner, H., and Puschendorf, B. (1998) In vitro binding of H1 histone subtypes to nucleosomal organized mouse mammary tumor virus long terminal repeat promotor, J. Biol. Chem., 273, 32236–32243.CrossRefPubMedGoogle Scholar
  37. 37.
    Sirotkin, A. M., Edelmann, W., Cheng, G., Klein-Szanto, A., Kucherlapati, R., and Skoultchi, A. I. (1995) Mice develop normally without the H1(0) linker histone, Proc. Natl. Acad. Sci. USA, 92, 6434–6438.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lin, Q., Sirotkin, A., and Skoultchi, A. I. (2000) Normal spermatogenesis in mice lacking the testis-specific linker histone H1t, Mol. Cell. Biol., 20, 2122–2128.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rabini, S., Franke, K., Saftig, P., Bode, C., Doenecke, D., and Drabent, B. (2000) Spermatogenesis in mice is not affected by histone H1.1 deficiency, Exp. Cell Res., 255, 114–124.CrossRefPubMedGoogle Scholar
  40. 40.
    Fan, Y., Sirotkin, A., Russell, R. G., Ayala, J., and Skoultchi, A. I. (2001) Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype, Mol. Cell. Biol., 21, 7933–7943.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fan, Y., Nikitina, T., Morin-Kensicki, E. M., Zhao, J., Magnuson, T. R., Woodcock, C. L., and Skoultchi, A. I. (2003) H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo, Mol. Cell. Biol., 23, 4559–4572.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lennox, R. W., and Cohen, L. H. (1983) The histone H1 complements of dividing and nondividing cells of the mouse, J. Biol. Chem., 258, 262–268.PubMedGoogle Scholar
  43. 43.
    Trollope, A. F., Sapojnikova, N., Thorne, A. W., Crane-Robinson, C., and Myers, F. A. (2010) Linker histone subtypes are not generalized gene repressors, Biochim. Biophys. Acta, 1799, 642–652.CrossRefPubMedGoogle Scholar
  44. 44.
    Sancho, M., Diani, E., Beato, M., and Jordan, A. (2008) Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth, PLoS Genet., 4, e1000227.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Terme, J. M., Sese, B., Millan-Arino, L., Mayor, R., Izpisua Belmonte, J. C., Barrero, M. J., and Jordan, A. (2011) Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency, J. Biol. Chem., 286, 35347–35357.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Perez-Montero, S., Carbonell, A., Moran, T., Vaquero, A., and Azorin, F. (2013) The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation, Dev. Cell, 26, 578–590.CrossRefPubMedGoogle Scholar
  47. 47.
    Clausell, J., Happel, N., Hale, T. K., Doenecke, D., and Beato, M. (2009) Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF, PLoS One, 4, e0007243.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Conn, K. L., Hendzel, M. J., and Schang, L. M. (2008) Linker histones are mobilized during infection with herpes simplex virus type 1, J. Virol., 82, 8629–8646.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Misteli, T., Gunjan, A., Hock, R., Bustin, M., and Brown, D. T. (2000) Dynamic binding of histone H1 to chromatin in living cells, Nature, 408, 877–881.CrossRefPubMedGoogle Scholar
  50. 50.
    McBryant, S. J., Lu, X., and Hansen, J. C. (2010) Multifunctionality of the linker histones: an emerging role for protein–protein interactions, Cell Res., 20, 519–528.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W. T., and Wang, X. (1998) The 40-kDa subunit of DNA frag-mentation factor induces DNA fragmentation and chromatin condensation during apoptosis, Proc. Natl. Acad. Sci. USA, 95, 8461–8466.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Woo, E. J., Kim, Y. G., Kim, M. S., Han, W. D., Shin, S., Robinson, H., Park, S. Y., and Oh, B. H. (2004) Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway, Mol. Cell, 14, 531–539.CrossRefPubMedGoogle Scholar
  53. 53.
    Widlak, P., Kalinowska, M., Parseghian, M. H., Lu, X., Hansen, J. C., and Garrard, W. T. (2005) The histone H1 C-terminal domain binds to the apoptotic nuclease, DNA fragmentation factor (DFF40/CAD) and stimulates DNA cleavage, Biochemistry, 44, 7871–7878.CrossRefPubMedGoogle Scholar
  54. 54.
    Widlak, P., Li, P., Wang, X., and Garrard, W. T. (2000) Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates, J. Biol. Chem., 275, 8226–8232.CrossRefPubMedGoogle Scholar
  55. 55.
    Kalashnikova, A. A., Winkler, D. D., McBryant, S. J., Henderson, R. K., Herman, J. A., DeLuca, J. G., Luger, K., Prenni, J. E., and Hansen, J. C. (2013) Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus, Nucleic Acids Res., 41, 4026–4035.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Widom, J. (1998) Chromatin structure: linking structure to function with histone H1, Curr. Biol., 8, 788–791.CrossRefGoogle Scholar
  57. 57.
    Razin, S. V., and Gavrilov, A. A. (2014) Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding, Epigenetics, 9, 653–657.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fussner, E., Strauss, M., Djuric, U., Li, R., Ahmed, K., Hart, M., Ellis, J., and Bazett-Jones, D. P. (2012) Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres, EMBO Rep., 13, 992–996.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289–293.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Daneholt, B. (2012) The transcribed template and the transcription loop in Balbiani rings, Cell Biol. Int. Rep., 16, 709–715.CrossRefGoogle Scholar
  61. 61.
    Correll, S. J., Schubert, M. H., and Grigoryev, S. A. (2012) Short nucleosome repeats impose rotational modulations on chromatin fibre folding, EMBO J., 31, 2416–2426.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Grigoryev, S. A., and Woodcock, C. L. (2012) Chromatin organization — the 30 nm fiber, Exp. Cell Res., 318, 1448–1455.CrossRefPubMedGoogle Scholar
  63. 63.
    Thoma, F., Koller, T., and Klug, A. (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin, J. Cell Biol., 83, 403–427.CrossRefPubMedGoogle Scholar
  64. 64.
    Finch, J. T., and Klug, A. (1976) Solenoidal model for superstructure in chromatin, Proc. Natl. Acad. Sci. USA, 73, 1897–1901.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Woodcock, C. L., Grigoryev, S. A., Horowitz, R. A., and Whitaker, N. (1993) A chromatin folding model that incorporates linker variability generates fibers resembling the native structures, Proc. Natl. Acad. Sci. USA, 90, 9021–9025.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Horowitz, R. A., Agard, D. A., Sedat, J. W., and Woodcock, C. L. (1994) The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon, J. Cell Biol., 125, 1–10.CrossRefPubMedGoogle Scholar
  67. 67.
    Schalch, T., Duda, S., Sargent, D. F., and Richmond, T. J. (2005) X-Ray structure of a tetranucleosome and its implications for the chromatin fibre, Nature, 436, 138–141.CrossRefPubMedGoogle Scholar
  68. 68.
    Robinson, P. J., and Rhodes, D. (2006) Structure of the “30 nm” chromatin fibre: a key role for the linker histone, Curr. Opin. Struct. Biol., 16, 336–343.CrossRefPubMedGoogle Scholar
  69. 69.
    Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R. R., and Richmond, T. J. (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber, Science, 306, 1571–1573.CrossRefPubMedGoogle Scholar
  70. 70.
    Norouzi, D., and Zhurkin, V. B. (2015) Topological polymorphism of the two-start chromatin fiber, Biophys. J., 108, 2591–2600.CrossRefPubMedGoogle Scholar
  71. 71.
    Huynh, V. A., Robinson, P. J., and Rhodes, D. (2005) A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone, J. Mol. Biol., 345, 957–968.CrossRefPubMedGoogle Scholar
  72. 72.
    Robinson, P. J., Fairall, L., Huynh, V. A., and Rhodes, D. (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure, Proc. Natl. Acad. Sci. USA, 103, 6506–6511.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hizume, K., Yoshimura, S. H., and Takeyasu, K. (2005) Linker histone H1 per se can induce three-dimensional folding of chromatin fiber, Biochemistry, 44, 12978–12989.CrossRefPubMedGoogle Scholar
  74. 74.
    Li, G., Levitus, M., Bustamante, C., and Widom, J. (2005) Rapid spontaneous accessibility of nucleosomal DNA, Nat. Struct. Mol. Biol., 12, 46–53.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations