Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 3, pp 201–212 | Cite as

Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria

  • S. I. Allakhverdiev
  • V. D. Kreslavski
  • S. K. Zharmukhamedov
  • R. A. Voloshin
  • D. V. Korol’kova
  • T. Tomo
  • J.-R. Shen
Review

Abstract

The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.

Key words

chlorophyll d chlorophyll f photosystem 1 photosystem 2 photosynthesis energetics of photosystems spectral properties cyanobacteria 

Abbreviations

Chl

chlorophyll

PA

photosynthetic apparatus

Pheo

pheophytin

PS I

photosystem 1

PS II

photosystem 2

RC

reaction center

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blankenship, R. E. (2002) Electron transfer pathways and components, in Molecular Mechanisms of Photosynthesis (Blankenship, R. E., ed.) Blackwell Science Ltd., Oxford, pp. 124–157.CrossRefGoogle Scholar
  2. 2.
    Scheer, H. (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, in Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Grimm, B., Porra, R. J., Rudiger, W., and Scheer, H., eds.) Springer, Dordrecht, pp. 4–11.Google Scholar
  3. 3.
    Loughlin, P., Lin, Y., and Chen, M. (2013) Chlorophyll d and Acaryochloris marina: current status, Photosynth. Res., 116, 277–293.CrossRefPubMedGoogle Scholar
  4. 4.
    Kobayashi, M., Akutsu, S., Fujinuma, D., Furukawa, H., Komatsu, H., Hotota, Y., Kato, Y., Kuroiwa, Y., Watanabe, T., Ohnishi-Kameyama, M., Ono, H., Ohkubo, S., and Miyashita, H. (2013) Physicochemical properties of chlorophylls in oxygenic photosynthesis — succession of co-factors from anoxygenic to oxygenic photosynthesis. Physicochemical properties of chlorophylls in oxygenic photosynthesis, in Photosynthesis (Dubinsky, Z., ed.), Chap. 3, InTech, doi: 10.5772/5546060.Google Scholar
  5. 5.
    Cohen, R. O., Shen, G., Golbeck, J. H., Xu, W., Chitnis, P. R., Valieva, A. I., Van der Est, A., Pushkar, Y., and Stehlik, D. (2004) Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0, Biochemistry, 43, 4741–4754.CrossRefPubMedGoogle Scholar
  6. 6.
    Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauss, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, 411, 909–917.CrossRefPubMedGoogle Scholar
  7. 7.
    Manning, W. M., and Strain, H. H. (1943) Chlorophyll d, a green pigment of red algae, J. Biol. Chem., 151, 1–19.Google Scholar
  8. 8.
    Miyashita, H., Ikemoto, H., Kurano, N., Adachi, K., Chihara, M., and Miyachi, S. (1996) Chlorophyll d as a major pigment, Nature, 383, 402–403.CrossRefGoogle Scholar
  9. 9.
    Kashiyama, Y., Miyashita, H., Ohkubo, S., Ogawa, N. O., Chikaraishi, Y., Takano, Y., Suga, H., Toyofuku, T., Nomaki, H., Kitazato, H., Nagata, T., and Ohkouchi, N. (2008) Evidence for global chlorophyll d, Science, 321, 658–658.CrossRefPubMedGoogle Scholar
  10. 10.
    Mimuro, M., Akimoto, S., Gotoh, T., Yokono, M., Akiyama, M., Tshuchiya, T., Miyashita, H., Kobayashi, M., and Yamazaki, I. (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina, FEBS Lett., 556, 95–98.CrossRefPubMedGoogle Scholar
  11. 11.
    Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., and Miyach, S. (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll, Plant Cell Physiol., 38, 274–281.CrossRefGoogle Scholar
  12. 12.
    Mimuro, M., Akimoto, S., Yamazaki, I., Miyashita, H., and Miyachi, S. (1999) Fluorescence properties of the chlorophyll d-dominated procaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells, Biochim. Biophys. Acta, 1412, 3746.Google Scholar
  13. 13.
    Allakhverdiev, S. I., Tomo, T., Shimada, Y., Kindo, H., Nagao, R., Klimov, V. V., and Mimuro, M. (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls, Proc. Natl. Acad. Sci. USA, 107, 3924–3929.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Swingley, W. D., Chen, M., Cheung, P. C., Conrad, A. L., Dejesa, L. C., Hao, J., Honchak, B. M., Karbach, L. E., Kurdoglu, A., Lahiri, S., Mastrian, S. D., Miyashita, H., Page, L., Ramakrishna, P., Satoh, S., Sattley, W. M., Shimada, Y., Taylor, H. L., Tomo, T., Tsuchiya, T., Wang, Z. T., Raymond, J., Mimuro, M., Blankenship, R. E., and Touchman, J. W. (2008) Niche adaptation and genome expansion in the chlorophyll d producing cyanobacterium Acaryochloris marina, Proc. Natl. Acad. Sci. USA, 105, 2005–2010.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen, M., and Blankenship, R. E. (2011) Expanding the solar spectrum used by photosynthesis, Trends Plant Sci., 16, 427–431.CrossRefPubMedGoogle Scholar
  16. 16.
    Tomo, T., Suzuki, T., Hirano, E., Tsuchiya, T., Miyashita, H., Dohmae, N., and Mimuro, M. (2006) Reversible absorption change of chlorophyll d in solutions, Chem. Phys. Lett., 423, 282–287.CrossRefGoogle Scholar
  17. 17.
    Kobayashi, M., Ohashi, S., Iwamoto, K., Shiraiwa, Y., Kato, Y., and Watanabe, T. (2007) Redox potential of chlorophyll d in vitro, Biochim. Biophys. Acta, 1767, 596602.Google Scholar
  18. 18.
    Hu, Q., Miyashita, H., Iwasaki, I., Kurano, N., Miyachi, S., Iwaki, M., and Itoh, S. (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis, Proc. Natl. Acad. Sci. USA, 95, 13319–13323.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hu, Q., Marquardt, J., Iwasaki, I., Miyashita, H., Kurano, N., Morschel, E., and Miyachi, S. (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina, Biochim. Biophys. Acta, 1412, 250–261.CrossRefPubMedGoogle Scholar
  20. 20.
    Tomo, T., and Allakhverdiev, S. I. (2014) The divergence of chlorophyll and photosynthetic reactions in chlorophyll d-containing cyanobacteria, in Contemporary Problems of Photosynthesis (Allakhverdiev, S. I., Rubin, A. B., and Shuvalov, V. A., eds.) Vol. 2, Chap. 20, Institute of Computer Science, Izhevsk–Moscow, pp. 115–139.Google Scholar
  21. 21.
    Tomo, T., Okubo, T., Akimoto, S., Tomo, T., Yokono, M., Miyashita, H., Tshuchiya, T., Noguchi, T., and Mimuro, M. (2007) Identification of special pair of photosystem II in a chlorophyll d-dominated cyanobacterium, Proc. Natl. Acad. Sci. USA, 104, 7283–7288.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sivakumar, V., Wang, R., and Hastings, G. (2003) Photooxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina, Biophys. J., 85, 3162–3172.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tomo, T., Kato, Y., Suzuki, T., Akimoto, S., Okubo, T., Noguchi, T., Hasegawa, K., Tsuchiya, T., Tanaka, K., Fukuya, M., Dohmae, N., Watanabe, T., and Mimuro, M. (2008) Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017, J. Biol. Chem., 283, 18198–18209.CrossRefPubMedGoogle Scholar
  24. 24.
    Schenderlein, M., Cetin, M., Barber, J., Telfer, A., and Schlodder, E. (2008) Spectroscopic studies of the chlorophyll d-containing photosystem I from the cyanobacterium, Acaryochloris marina, Biochim. Biophys. Acta, 1777, 1400–1408.CrossRefPubMedGoogle Scholar
  25. 25.
    Telfer, A., Pascal, A., Barber, J., Schenderlein, M., Schlodder, E., and Cetin, M. (2007) Electron transfer reactions in photosystems I and II of the chlorophyll d-containing cyanobacterium, Acaryochloris marina, Photosynth. Res., 91, 143.Google Scholar
  26. 26.
    Nakamura, A., Suzawa, T., Kato, Y., and Watanabe, T. (2005) Significant species-dependence of P700 redoxpotential as verified by spectroelectrochemistry: comparison of spinach and Thermosynechococcus elongatus, FEBS Lett., 579, 2273–2276.CrossRefPubMedGoogle Scholar
  27. 27.
    Onoiko, Y. B. (2010) Chlorophyll d — the main photosynthetic pigment of Acaryochloris marina Miyashita et Chihara (Cyanophyta), Algologiya, 20, 15–32.Google Scholar
  28. 28.
    Kumazaki, S., Abiko, K., Ikegami, I., Iwaki, M., and Itoh, S. (2002) Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina, FEBS Lett., 530, 153–157.CrossRefPubMedGoogle Scholar
  29. 29.
    Itoh, S., Mino, H., Itoh, K., Shigenaga, T., Uzumaki, T., and Iwaki, M. (2007) Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina, Biochemistry, 46, 1247312481.Google Scholar
  30. 30.
    Umena, Y., Kawakami, K., Shen, J. R., and Kamiya, N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, 73, 5–60.Google Scholar
  31. 31.
    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Architecture of the photosynthetic oxygen-evolving center, Science, 303, 1831–1838.CrossRefPubMedGoogle Scholar
  32. 32.
    Tomo, T., Akimoto, S., Tsuchiya, T., Fukuya, M., Tanaka, K., and Mimuro, M. (2008) Isolation and spectral characterization of photosystem II reaction center from Synechocystis sp. PCC 6803, Photosynth. Res., 98, 293–302.CrossRefPubMedGoogle Scholar
  33. 33.
    Tomo, T., Shinoda, T., Chen, M., Allakhverdiev, S. I., and Akimoto, S. (2014) Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells, Biochim. Biophys. Acta, 1837, 1484–1489.CrossRefPubMedGoogle Scholar
  34. 34.
    Allakhverdiev, S. I., Tsuchiya, T., Watabe, K., Kojima, A., Los, D. A., Tomo, T., Klimov, V. V., and Mimuro, M. (2011) Redox potential of primary electron acceptor quinone (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d, Proc. Natl. Acad. Sci. USA, 108, 8054–8058.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Satoh, K. (2004) Introduction to the photosystem II reaction center — isolation and biochemical and biophysical characterization, in Oxygenic Photosynthesis: the Light Reactions (Ort, D. R., Yocum, C. F., and Heichel, E. F., eds.) Springer, pp. 193–211.CrossRefGoogle Scholar
  36. 36.
    Frese, R. N., Germano, F. L., De Weerd, I. H. M., Van Stokkum, A. Y., Shkuropatov, V. A., Shuvalov, H. J., Van Gorkom, R., Van Grondelle, R., and Dekker, J. P.(2003) Electric field effects on the chlorophylls, pheophytins and β-carotenes in the reaction center of photosystem II, Biochemistry, 42, 9205–9213.CrossRefPubMedGoogle Scholar
  37. 37.
    Prokhorenko, V. I., and Holzwarth, A. R. (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study, J. Phys. Chem. B, 104, 1156311578.CrossRefGoogle Scholar
  38. 38.
    Schlodder, E., Cetin, M., Eckert, H.-J., Schmitt, F.-J., Barber, J., and Telfer, A. (2007) Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina, Biochim. Biophys. Acta, 1767, 589–595.CrossRefPubMedGoogle Scholar
  39. 39.
    Razeghifard, M. R., Chen, M., Hughes, J. L., Freeman, J., Krausz, E., and Wydrzynski, T. (2005) Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina, Biochemistry, 44, 11178–11187.CrossRefPubMedGoogle Scholar
  40. 40.
    Miyashita, H., Ohkubo, S., Komatsu, H., Sorimachi, Y., Fukayama, D., Fujinuma, D., Akutsu S., and Kobayashi, M. (2014) Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1, isolated from Lake Biwa, J. Phys. Chem. Biophys., 4, 149–158.CrossRefGoogle Scholar
  41. 41.
    Hasegawa, K., and Noguchi, T. (2005) Density functional theory calculations on the dielectric-constant dependence of the oxidation potential of chlorophyll: implication for the high potential of P680 in photosystem II, Biochemistry, 44, 8865–8872.CrossRefPubMedGoogle Scholar
  42. 42.
    Renger, G. (2007) Oxidative photosynthetic water splitting: energetics, kinetics and mechanism, Photosynth. Res., 92, 407–425.CrossRefPubMedGoogle Scholar
  43. 43.
    Renger, G. (2011) Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism, J. Photochem. Photobiol. B Biol., 104, 35–43.CrossRefGoogle Scholar
  44. 44.
    Shevela, D., Noring, B., Eckert, H. J., Messinger, J., and Renger, G. (2006) Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors, Phys. Chem. Chem. Phys., 8, 3460–3466.CrossRefPubMedGoogle Scholar
  45. 45.
    Gloag, R. S., Ritchie, R. J., Chen, M., Larkum, A. W. D., and Quinnell, R. G. (2007) Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina, Biochim. Biophys. Acta, 1767, 127–135.CrossRefPubMedGoogle Scholar
  46. 46.
    Schiller, H., Senger, H., Miyashita, H., Miyachi, S., and Dau, H. (1997) Light-harvesting in Acaryochloris marina–spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system, FEBS Lett., 410, 433436.CrossRefGoogle Scholar
  47. 45.
    Chen, M., Telfer A., Lin, S., Pascal, A., Larkum, A. W. D., Barber, J., and Blankenship, R. E. (2005) The nature of the photosystem II reaction center in the chlorophyll d-containing prokaryote, Acaryochloris marina, Photochem. Photobiol. Sci., 4, 1060–1064.CrossRefPubMedGoogle Scholar
  48. 47.
    Chen, M., Schliep, M., Willows, R. D., Cai, Z.-L., Neilan, B. A., and Scheer, H. (2010) A red-shifted chlorophyll, Science, 329, 1318–1319.CrossRefPubMedGoogle Scholar
  49. 48.
    Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C. P., Macintyre, I. G., Paerl, H. W., Pinckney, J. L., Prufert-Bebout, L., Steppe, T. F., and Des Marais, D. J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites, Nature, 406, 989–992.CrossRefPubMedGoogle Scholar
  50. 49.
    Chen, M., Li, Y., Birch, D., and Willows, R. D. (2012) A cyanobacterium that contains chlorophyll f — a red-absorbing photopigment, FEBS Lett., 586, 3249–3254.CrossRefPubMedGoogle Scholar
  51. 50.
    Akutsu, S., Fujinuma, D., Furukawa, H., Watanabe, T., Ohnishi-Kameyama, M., Ono, H., Ohkubo, S., Miyashita, H., and Kobayashi, M. (2011) Pigment analysis of a chlorophyll f-containing cyanobacterium strain KC1 isolated from Lake Biwa, Photomed. Photobiol., 33, 35–40.Google Scholar
  52. 51.
    Li, Y., Scales, N., Blankenship, R. E., Willows, R. D., and Chen, M. (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f, Biochim. Biophys. Acta, 1817, 1292–1298.CrossRefPubMedGoogle Scholar
  53. 52.
    Li, Y., Cai, Z.-L., and Chen, M. (2013) Spectroscopic properties of chlorophyll f, J. Phys. Chem. B, 117, 1130911317.Google Scholar
  54. 53.
    Akimoto, S., Shinoda, T., Chen, M., Allakhverdiev, S. I., and Tomo, T. (2015) Energy transfer in the chlorophyll f-containing bacterium, Halomicronemahong dechloris, analyzed by time-resolved fluorescence spectroscopies, Photosynth. Res., 125, 115–122.CrossRefPubMedGoogle Scholar
  55. 54.
    Niedzwiedzki, D. M., Liu, H., Chen, M., and Blankenship, R. E. (2014) Excited state properties of chlorophyll f in organic solvents at ambient and cryogenic temperatures, Photosynth. Res., 121, 25–34.CrossRefPubMedGoogle Scholar
  56. 55.
    Willows, R. D., Li, Y., Scheer, H., and Chen, M. (2013) Structure of chlorophyll f, Org. Lett., 15, 1588–1590.CrossRefPubMedGoogle Scholar
  57. 56.
    Hastings, G., and Wang, R. (2008) Vibrational mode frequency calculations of chlorophyll-d for assessing (P740 +–P740) FTIR difference spectra obtained using photosystem I particles from Acaryochloris marina, Photosynth. Res., 95, 55–62.CrossRefPubMedGoogle Scholar
  58. 57.
    Chen, M. (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis, Annu. Rev. Biochem., 83, 317–340.CrossRefPubMedGoogle Scholar
  59. 58.
    Schliep, M., Crossett, B., Willows, R. D., and Chen, M. (2010) 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors, J. Biol. Chem., 285, 28450–28456.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 59.
    Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., and Bryant, D. A. (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in farred light, Science, 345, 1312–1317.CrossRefPubMedGoogle Scholar
  61. 60.
    Gan, F., Shen, G., and Bryant, D. A. (2015) Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria, Life, 5, 4–24.CrossRefPubMedCentralGoogle Scholar
  62. 61.
    Airs, R. L., Temperton, B., Sambles, C., Farnham, G., Skill, S. C., and Llewellyn, C. A. (2014) Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation, FEBS Lett., 588, 3770–3777.CrossRefPubMedGoogle Scholar
  63. 62.
    Gates, D. M., Keegan, H. J., Schleter, J. C., and Weidne, V. R. (1965) Spectral properties of plants, Appl. Optics, 4, 11–20.CrossRefGoogle Scholar
  64. 63.
    Blankenship, R. E., and Chen, M. (2013) Spectral expansion and antenna reduction can enhance photosynthesis for energy production, Curr. Opin. Chem. Biol., 17, 457–461.CrossRefPubMedGoogle Scholar
  65. 64.
    Mielke, S. P., Kiang, N. Y., Blankenship, R. E., Gunner, M. R., and Mauzerall, D. (2011) Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species, Biochim. Biophys. Acta, 1807, 1231–1236.CrossRefPubMedGoogle Scholar
  66. 65.
    Mielke, S. P., Kiang, N. Y., Blankenship, R. E., and Mauzerall, D. (2013) Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina, Biochim. Biophys. Acta, 1827, 255–265.CrossRefPubMedGoogle Scholar
  67. 66.
    Karapetyan, N. V., Bolychevtseva, Y. V., Yurina, N. P., Terekhova, I. V., Shubin, V. V., and Brecht, M. (2014) Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions, Biochemistry (Moscow), 79, 213–220.CrossRefGoogle Scholar
  68. 67.
    Hale, G. M., and Querry, M. R. (1943) Optical constants of water in the 200 nm to 200 µm wavelength region, Appl. Optics, 12, 555–563.CrossRefGoogle Scholar
  69. 68.
    Sekar, N., and Ramasamy, R. P. (2015) Recent advances in photosynthetic energy conversion, J. Photochem. Photobiol. C Photochem. Rev., 22, 19–33.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. I. Allakhverdiev
    • 1
    • 2
    • 3
  • V. D. Kreslavski
    • 1
    • 2
  • S. K. Zharmukhamedov
    • 2
  • R. A. Voloshin
    • 1
  • D. V. Korol’kova
    • 1
  • T. Tomo
    • 4
    • 5
  • J.-R. Shen
    • 6
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia
  3. 3.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Department of Biology, Faculty of ScienceTokyo University of ScienceTokyoJapan
  5. 5.PRESTOJapan Science and Technology Agency (JST)SaitamaJapan
  6. 6.Faculty of Science, Photosynthesis Research Center, Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations