Biochemistry (Moscow)

, Volume 81, Issue 3, pp 187–200 | Cite as

Overview of fusion tags for recombinant proteins

  • E. N. KosobokovaEmail author
  • K. A. Skrypnik
  • V. S. Kosorukov


Virtually all recombinant proteins are now prepared using fusion domains also known as “tags”. The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.

Key words

fusion tags chromatography enhancement of protein solubility 



glutathione S-transferase


human granulocyte colony-stimulating factor


human granulocyte-macrophage colony-stimulating factor


human interferon


maltose-binding protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bucher, M. H., Evdokimov, A. G., and Waugh, D. S. (2002) Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein, Acta Crystallogr. D Biol. Crystallogr., 58, 392–397.PubMedCrossRefGoogle Scholar
  2. 2.
    Butt, T. R., Edavettal, S. C., Hall, J. P., and Mattern, M. R. (2005) SUMO fusion technology for difficult-to-express proteins, Protein Express. Purif., 43, 1–9.CrossRefGoogle Scholar
  3. 3.
    Esposito, D., and Chatterjee, D. K. (2006) Enhancement of soluble protein expression through the use of fusion tags, Curr. Opin. Biotechnol., 17, 353–358.PubMedCrossRefGoogle Scholar
  4. 4.
    Pacheco, B., Crombet, L., Loppnau, P., and Cossar, D. (2012) A screening strategy for heterologous protein expression in Escherichia coli with the highest return of investment, Protein Express. Purif., 81, 33–41.CrossRefGoogle Scholar
  5. 5.
    Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., and Delucas, L. J. (2007) His-tag impact on structure, Acta Crystallogr. D Biol. Crystallogr., 63, 295–301.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, Z., Li, Y., and Yuan, Q. (2015) Study the effect of His-tag on chondroitinase ABC I based on characterization of enzyme, Int. J. Biol. Macromol., 78, 96–101.PubMedCrossRefGoogle Scholar
  7. 7.
    Li, D. F., Feng, L., Hou, Y. J., and Liu, W. (2013) The expression, purification and crystallization of a ubiquitinconjugating enzyme E2 from Agrocybe aegerita underscore the impact of His-tag location on recombinant protein properties, Acta Crystallogr. F Struct. Biol. Cryst. Commun., 69, 153–157.CrossRefGoogle Scholar
  8. 8.
    Mason, A. B., He, Q. Y., Halbrooks, P. J., Everse, S. J., Gumerov, D. R., Kaltashov, I. A., Smith, V. C., Hewitt, J., and MacGillivray, R. T. (2002) Differential effect of a Histag at the N- and C-termini: functional studies with recombinant human serum transferring, Biochemistry, 41, 9448–9454.PubMedCrossRefGoogle Scholar
  9. 9.
    Pajecka, K., Nielsen, C. W., Hauge, A., Zaganas, I., Bak, L. K., Schousboe, A., Plaitakis, A., and Waagepetersen, H. S. (2014) Glutamate dehydrogenase isoforms with N-terminal (His)6- or FLAG-tag retain their kinetic properties and cellular localization, Neurochem. Res., 39, 487–499.PubMedCrossRefGoogle Scholar
  10. 10.
    Chaga, G., Hopp, J., and Nelson, P. (1999) Immobilized metal ion affinity chromatography on Co2+-carboxymethyl aspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle, Biotechnol. Appl. Biochem., 29, 1924.Google Scholar
  11. 11.
    Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems, Appl. Microbiol. Biotechnol., 60, 523–533.PubMedCrossRefGoogle Scholar
  12. 12.
    Kosobokova, E. N., and Kosorukov, V. S. (2010) Study on the influence of poly-His domains on the expression level and purification efficiency of human interferon-α-2b, Ros. Bioterapevt. Zh., 4, 107–112.Google Scholar
  13. 13.
    Kosobokova, E. N., and Kosorukov, V. S. (2013) Recovery of the biological activity of recombinant cytokines during refolding on the affinity column, Vestnik Bashkir. Univer., 4, 1065–1068.Google Scholar
  14. 14.
    Kosobokova, E. N., Skrypnik, K. A., Pinyugina, M. V., Shcherbakov, A. I., and Kosorukov, V. S. (2013) Optimization of refolding of recombinant human granulocyte macrophagal colony-stimulating factor immobilized on affinity sorbent, Biotekhnologiya, 3, 39–46.Google Scholar
  15. 15.
    Randolph, T. W. (2012) The two faces of His-tag: immune response versus ease of protein purification, Biotechnol. J., 7, 18–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Andersen, K. R., Leksa, N. C., and Schwartz, T. U. (2013) Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification, Proteins, 81, 1857–1861.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Robichon, C., Luo, J., Causey, T. B., Benner, J. S., and Samuelson, J. C. (2011) Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography, Appl. Environ. Microbiol., 77, 4634–4646.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cheesman, M. J., Kneller, M. B., Kelly, E. J., Thompson, S. J., Yeung, C. K., Eaton, D. L., and Rettie, A. E. (2001) Purification and characterization of hexahistidine-tagged cyclohexanone monooxygenase expressed in Saccharomyces cerevisiae and Escherichia coli, Protein Express. Purif., 21, 81–86.CrossRefGoogle Scholar
  19. 19.
    Zvereva, A. S., Petrovskaya, L. E., Rodina, A. V., Frolova, O. Y., Ivanov, P. A., Shingarova, L. N., Komarova, T. V., Dorokhov, Y. L., Dolgikh, D. A., Kirpichnikov, M. P., and Atabekov, J. G. (2009) Production of biologically active human myelocytokines in plants, Biochemistry (Moscow), 74, 1187–1194.CrossRefGoogle Scholar
  20. 20.
    Pradeau-Aubreton, K., Ruff, M., Garnier, J. M., Schultz, P., and Drillien, R. (2010) Vectors for recombinational cloning and gene expression in mammalian cells using modified vaccinia virus Ankara, Anal. Biochem., 404, 103105.CrossRefGoogle Scholar
  21. 21.
    Prickett, K. S., Amberg, D. C., and Hopp, T. P. (1989) A calcium-dependent antibody for identification and purification of recombinant proteins, Biotechniques, 7, 580–589.PubMedGoogle Scholar
  22. 22.
    Brizzard, B. L., Chubet, R. G., and Vizard, D. L. (1994) Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution, Biotechniques, 16, 730–735.PubMedGoogle Scholar
  23. 23.
    Slootstra, J. W., Kuperus, D., Pluckthun, A., and Meloen, R. H. (1997) Identification of new tag sequences with differential and selective recognition properties for the antiFLAG monoclonal antibodies M1, M2 and M5, Mol. Divers, 2, 156–164.PubMedCrossRefGoogle Scholar
  24. 24.
    Park, S. H., Cheong, C., Idoyaga, J., Kim, J. Y., Choi, J. H., Do, Y., Lee, H., Jo, J. H., Oh, Y. S., Im, W., Steinman, R. M., and Park, C. G. (2008) Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection, J. Immunol. Methods, 331, 27–38.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Einhauer, A., and Jungbauer, A. (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins, J. Biochem. Biophys. Methods, 49, 455–465.PubMedCrossRefGoogle Scholar
  26. 26.
    Jang, S. H., Lee, C. H., Kim, Y. S., and Jeong, K. J. (2011) High-level production of a kringle domain variant by highcell-density cultivation of Escherichia coli, Appl. Microbiol. Biotechnol., 92, 327–336.PubMedCrossRefGoogle Scholar
  27. 27.
    Huyck, R. W., Keightley, A., and Laity, J. H. (2012) Expression and purification of full length mouse metal response element binding transcription factor-1 using Pichia pastoris, Protein Express. Purif., 85, 86–93.CrossRefGoogle Scholar
  28. 28.
    Papakonstantinou, T., Harris, S. J., Fredericks, D., Harrison, C., Wallace, E. M., and Hearn, M. T. (2009) Synthesis, purification and bioactivity of recombinant human activin A expressed in the yeast Pichia pastoris, Protein Express. Purif., 64, 131–138.CrossRefGoogle Scholar
  29. 29.
    Liu, J., Xu, X., Fu, J., Fan, Z., Lu, C., Lu, J., Zhu, J., and Ye, Q. (2013) Cloning, eukaryotic expression and cellular localization of cysteine and glycine-rich protein 1, Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 29, 690–693.PubMedGoogle Scholar
  30. 30.
    Sasaki, F., Okuno, T., Saeki, K., Min, L., Onohara, N., Kato, H., Shimizu, T., and Yokomizo, T. (2012) A highaffinity monoclonal antibody against the FLAG-tag useful for G-protein-coupled receptor study, Anal. Biochem., 425, 157–165.PubMedCrossRefGoogle Scholar
  31. 31.
    Nonaka, H., Fujishima, S. H., Uchinomiya, S. H., Ojida, A., and Hamachi, I. (2009) FLAG-tag selective covalent protein labeling via a binding-induced acyl-transfer reaction, Bioorg. Med. Chem. Lett., 19, 6696–6699.PubMedCrossRefGoogle Scholar
  32. 32.
    Smith, J. C., Derbyshire, R. B., Cook, E., Dunthorne, L., Viney, J., Brewer, S. J., Sassenfeld, H. M., and Bell, L. D. (1984) Chemical synthesis and cloning of a poly(arginine)coding gene fragment designed to aid polypeptide purification, Gene, 32, 321–332.PubMedCrossRefGoogle Scholar
  33. 33.
    Brewer, S. J., and Sassenfeld, H. M. (1985) The purification of recombinant proteins using C-terminal polyarginine fusions, Trend Biotechnol., 5, 119–122.CrossRefGoogle Scholar
  34. 34.
    Nock, S., Spudich, J. A., and Wagner, P. (1997) Reversible, site-specific immobilization of polyarginine-tagged fusion proteins on mica surfaces, FEBS Lett., 414, 233–238.PubMedCrossRefGoogle Scholar
  35. 35.
    Levin, G., Mendive, F., Targovnik, H. M., Cascone, O., and Miranda, M. V. (2005) Genetically engineered horseradish peroxidase for facilitated purification from baculovirus cultures by cation-exchange chromatography, J. Biotechnol., 118, 363–369.PubMedCrossRefGoogle Scholar
  36. 36.
    Fuchs, S. M., and Raines, R. T. (2005) Polyarginine as a multifunctional fusion tag, Protein Sci., 14, 1538–1544.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Schmidt, T. G., and Skerra, A. (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment, Protein Eng., 6, 109–122.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidt, T. G., and Skerra, A. (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins, Nat. Protoc., 2, 1528–1535.PubMedCrossRefGoogle Scholar
  39. 39.
    Schmidt, T. G., Batz, L., Bonet, L., Carl, U., Holzapfel, G., Kiem, K., Matulewicz, K., Niermeier, D., Schuchardt, I., and Stanar, K. (2013) Development of the Twin-Streptag® and its application for purification of recombinant proteins from cell culture supernatants, Protein Express. Purif., 92, 54–61.CrossRefGoogle Scholar
  40. 40.
    Wilson, D. S., Keefe, A. D., and Szostak, J. W. (2001) The use of mRNA display to select high-affinity protein-binding peptides, Proc. Natl. Acad. Sci. USA, 98, 3750–3755.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Keefe, A. D., Wilson, D. S., Seelig, B., and Szostak, J. W. (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag, Protein Express. Purif., 23, 440–446.CrossRefGoogle Scholar
  42. 42.
    Mitchell, S. F., and Lorsch, J. R. (2015) Protein affinity purification using intein/chitin binding protein tags, Methods Enzymol., 559, 111–125.PubMedCrossRefGoogle Scholar
  43. 43.
    Khatuntseva, S. A., Eldarov, M. A., Redo, V. A., and Skryabin, K. G. (2008) Purification and immobilization of recombinant variants of Brevundimonas diminuta glutaryl7-aminocephalosporanic acid acylase expressed in Escherichia coli cells, J. Biotechnol., 133, 123–126.PubMedCrossRefGoogle Scholar
  44. 44.
    Kurek, D. V., Lopatin, C. A., Eldarov, M. A., and Skryabin, K. G. (2008) Chromatographic purification of recombinant protein with the chitin-binding domain as an affinity label URI: Scholar
  45. 45.
    Arnau, J., Lauritzen, C., Petersen, G. E., and Pedersen, J. (2006) Current strategies for the use of affinity tags avd tag removal for the purification of recombinant proteins, Protein Express. Purif., 48, 1–13.CrossRefGoogle Scholar
  46. 46.
    Zhao, X., Li, G., and Liang, S. (2013) Several affinity tags commonly used in chromatographic purification, J. Anal. Methods Chem., 2013, 581093.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Nygren, P. A., Stahl, S., and Uhlen, M. (1994) Engineering proteins to facilitate bioprocessing, Trends Biotechnol., 12, 184–188.PubMedCrossRefGoogle Scholar
  48. 48.
    Sun, P., Tropea, J. E., and Waugh, D. S. (2011) Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidine-tagged maltose-binding protein as a fusion partner, Methods Mol. Biol., 705, 259–274.PubMedCrossRefGoogle Scholar
  49. 49.
    Sachdev, D., and Chirgwin, J. M. (2000) Fusions to maltose-binding protein: control of folding and solubility in protein purification, Methods Enzymol., 326, 312–321.PubMedCrossRefGoogle Scholar
  50. 50.
    Fox, J. D., Routzahn, K. M., Bucher, M. H., and Waugh, D. S. (2003) Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers, FEBS Lett., 537, 53–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Raran-Kurussi, S., and Waugh, D. S. (2012) The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated, PLoS One, 7, e49589.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pattenden, L. K., and Thomas, W. G. (2008) Amylose affinity chromatography of maltose-binding protein: purification by both native and novel matrix-assisted dialysis refolding methods, Methods Mol. Biol., 421, 169–189.PubMedGoogle Scholar
  53. 53.
    Needle, D., and Waugh, D. S. (2014) Rescuing aggregation-prone proteins in Escherichia coli with a dual His6MBP tag, Methods Mol. Biol., 1177, 81–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang, J., Lv, X., Xu, R., Tao, X., Dong, Y., Sun, A., and Wei, D. (2015) Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli, Appl. Microbiol. Biotechnol., 99, 6705–6713.PubMedCrossRefGoogle Scholar
  55. 55.
    De Marco, V., Stier, G., Blandin, S., and De Marco, A. (2004) The solubility and stability of recombinant proteins are increased by their fusion to NusA, Biochem. Biophys. Res. Commun., 322, 766–771.PubMedCrossRefGoogle Scholar
  56. 56.
    Davis, G. D., Elisee, C., Newham, D. M., and Harrison, R. G. (1999) New fusion protein systems designed to give soluble expression in Escherichia coli, Biotechnol. Bioeng., 65, 382–388.PubMedCrossRefGoogle Scholar
  57. 57.
    Li, M., and Huang, D. (2007) Purification and characterization of prokaryotically expressed human interferonlambda2, Biotechnol. Lett., 29, 1025–1029.PubMedCrossRefGoogle Scholar
  58. 58.
    Kohl, T., Schmidt, C., Wiemann, S., Poustka, A., and Korf, U. (2008) Automated production of recombinant human proteins as resource for proteome research, Proteome Sci., 6, 4.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Busso, D., Delagoutte-Busso, B., and Moras, D. (2005) Construction of a set Gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli, Anal. Biochem., 343, 313–321.PubMedCrossRefGoogle Scholar
  60. 60.
    Raran-Kurussi, S., and Waugh, D. S. (2014) Unrelated solubility-enhancing fusion partners MBP and NusA utilize a similar mode of action, 111, 2407–2411.Google Scholar
  61. 61.
    Smith, D. B., and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase, Gene, 67, 31–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Harper, S., and Speicher, D. W. (2011) Purification of proteins fused to glutathione S-transferase, Methods Mol. Biol., 681, 259–280.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Young, C. L., Britton, Z. T., and Robinson, A. S. (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications, Biotechnol. J., 7, 620–634.PubMedCrossRefGoogle Scholar
  64. 64.
    Costa, S. J., Almeida, A., Castro, A., Domingues, L., and Besir, H. (2013) The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology, Appl. Microbiol. Biotechnol., 97, 6779–6791.PubMedCrossRefGoogle Scholar
  65. 65.
    Costa, S., Almeida, A., Castro, A., and Domingues, L. (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system, Front. Microbiol., 5, 63.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gill, G. (2005) Something about SUMO inhibits transcription, Curr. Opin. Genet. Dev., 15, 536–541.PubMedCrossRefGoogle Scholar
  67. 67.
    Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., and Butt, T. R. (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO, Protein Sci., 15, 182–189.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nilsson, B., Moks, T., Jansson, B., Abrahmsen, L., Elmblad, A., Holmgren, E., Henrichson, C., Jones, T. A., and Uhlen, M. (1987) A synthetic IgG-binding domain based on staphylococcal protein A, Protein Eng., 1, 107113.CrossRefGoogle Scholar
  69. 69.
    Hedhammar, M., and Hober, S. (2007) Z(basic) — a novel purification tag for efficient protein recovery, J. Chromatogr. A, 1161, 22–28.PubMedCrossRefGoogle Scholar
  70. 70.
    Janssen, D. B. (2004) Evolving haloalkane dehalogenases, Curr. Opin. Chem. Biol., 8, 150–159.PubMedCrossRefGoogle Scholar
  71. 71.
    Ohana, R. F., Encell, L. P., Zhao, K., Simpson, D., Slater, M. R., Urh, M., and Wood, K. V. (2009) HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification, Protein Express. Purif., 68, 110–120.CrossRefGoogle Scholar
  72. 72.
    Los, G. V., Encell, L. P., McDougall, M. G., Hartzell, D. D., Karassina, N., Zimprich, C., Wood, M. G., Learish, R., Ohana, R. F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugiris, G., Zhu, J., Darzins, A., Klaubert, D. H., Bulleit, R. F., and Wood, K. V. (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis, ACS Chem. Biol., 3, 373–382.PubMedCrossRefGoogle Scholar
  73. 73.
    Peterson, S. N., and Kwon, K. (2012) The HaloTag: improving soluble expression and applications in protein functional analysis, Curr. Chem. Genom., 6, 8–17.CrossRefGoogle Scholar
  74. 74.
    Li, Y. (2011) The tandem affinity purification technology: an overview, Biotechnol. Lett., 33, 1487–1499.PubMedCrossRefGoogle Scholar
  75. 75.
    Hammarberg, B., Nygren, P. A., Holmgren, E., Elmblad, A., Tally, M., Hellman, U., Moks, T., and Uhlen, M. (1989) Dual affinity fusion approach and its use to express recombinant human insulin-like growth factor II, Proc. Natl. Acad. Sci. USA, 86, 4367–4371.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tagwerker, C., Flick, K., Cui, M., Guerrero, C., Dou, Y., Auer, B., Baldi, P., Huang, L., and Kaiser, P. (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo crosslinking, Mol. Cell. Proteom., 5, 737–748.CrossRefGoogle Scholar
  77. 77.
    Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration, Nat. Biotechnol., 17, 1030–1032.PubMedCrossRefGoogle Scholar
  78. 78.
    Li, Y., Franklin, S., Zhang, M. J., and Vondriska, T. M. (2011) Highly efficient purification of protein complexes from mammalian cells using a novel streptavidinbinding peptide and hexahistidine tandem tag system: application to Bruton’s tyrosine kinase, Protein Sci., 20, 140–149.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gloeckner, C. J., Boldt, K., Schumacher, A., and Ueffing, M. (2009) Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag, Methods Mol. Biol., 564, 359–372.PubMedCrossRefGoogle Scholar
  80. 80.
    Gully, D., Moinier, D., Loiseau, L., and Bouveret, E. (2003) New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification, FEBS Lett., 548, 90–96.PubMedCrossRefGoogle Scholar
  81. 81.
    Murayama, T., and Kobayashi, T. (2014) Purification of recombinant proteins with a multifunctional GFP tag, Methods Mol. Biol., 1177, 151–161.PubMedCrossRefGoogle Scholar
  82. 82.
    Gasparian, M. E., Ostapchenko, V. G., Dolgikh, D. A., and Kirpichnikov, M. P. (2006) Biochemical characterization of human enteropeptidase light chain, Biochemistry (Moscow), 71, 113–119.CrossRefGoogle Scholar
  83. 83.
    Gasparian, M. E., Bychkov, M. L., Dolgikh, D. A., and Kirpichnikov, M. P. (2011) Strategy for improvement of enteropeptidase efficiency in tag removal processes, Protein Express. Purif., 79, 191–196.CrossRefGoogle Scholar
  84. 84.
    Gogarten, P. J., Senejani, A. G., Zhaxybayeva, O., Olendzenski, L., and Hiliaro, E. (2002) INTEINS: structure, function and evolution, Annu. Rev. Microbiol., 56, 263–287.PubMedCrossRefGoogle Scholar
  85. 85.
    Ayala, J. C., Pimienta, E., Rodriguez, C., Anne, J., Vallin, C., Milanes, M. T., King-Batsios, E., Huygen, K., and Van Mellaert, L. (2013) Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans, J. Microbiol. Methods, 94, 192–198.PubMedCrossRefGoogle Scholar
  86. 86.
    Klein, W. (2003) Calmodulin-binding peptide as a removable affinity tag for protein purification, Methods Mol. Biol., 205, 79–97.PubMedGoogle Scholar
  87. 87.
    Sugimoto, N., Igarashi, K., and Samejima, M. (2012) Cellulose affinity purification of fusion proteins tagged with fungal family 1 cellulose-binding domain, Protein Express. Purif., 82, 290–296.CrossRefGoogle Scholar
  88. 88.
    Hillman, M. C., Yang, L. S., Sun, S., Duke, J. L., O’Neil, K. T., Kochie, J. E., Karjoo, A., Nath, P., Breth, L. A., Murphy, K., Ross, O. H., Burn, T. C., Hollis, G. F., and Wynn, R. (2001) A comprehensive system for protein purification and biochemical analysis based on antibodies to c-myc peptide, Protein Express. Purif., 23, 359368.Google Scholar
  89. 89.
    Backer, M. V., Gaynutdinov, T. I., Aloise, R., Przekop, K., and Backer, J. M. (2002) Engineering S-protein fragments of bovine ribonuclease A for targeted drug delivery, Protein Express. Purif., 26, 455–461.CrossRefGoogle Scholar
  90. 90.
    Tykvart, J., Sacha, P., Barinka, C., Knedlik, T., Starkova, J., Lubkowski, J., and Konvalinka, J. (2012) Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II, Protein Express. Purif., 82, 106–115.CrossRefGoogle Scholar
  91. 91.
    Sueda, S., Tanaka, S., Inoue, S., and Komatsu, H. (2012) A luminescent affinity tag for proteins based on the terbium(III)-binding peptide, Anal. Biochem., 422, 52–54.PubMedCrossRefGoogle Scholar
  92. 92.
    Wang, Y., Shao, Q., Yu, X., Kong, W., Hildreth, J. E., and Liu, B. (2011) N-terminal hemagglutinin tag renders lysine-deficient APOBEC3G resistant to HIV-1 Vifinduced degradation by reduced polyubiquitination, J. Virol., 85, 4510–4519.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Liew, O. W., Ching Chong, J. P., Yandle, T. G., and Brennan, S. O. (2005) Preparation of recombinant thioredoxin fused N-terminal proCNP: analysis of enterokinase cleavage products reveals new enterokinase cleavage sites, Protein Express. Purif., 41, 332–340.CrossRefGoogle Scholar
  94. 94.
    Charlton, A., and Zachariou, M. (2011) Tag removal by site-specific cleavage of recombinant fusion proteins, Methods Mol. Biol., 681, 349–367.PubMedCrossRefGoogle Scholar
  95. 95.
    Jenny, R. J., Mann, K. G., and Lundblad, R. L. (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa, Protein Express. Purif., 31, 1–11.CrossRefGoogle Scholar
  96. 96.
    Shih, Y. P., Wu, H. C., Hu, S. M., Wang, T. F., and Wang, A. H. (2005) Self-cleavage of fusion protein in vivo using TEV protease to yield native protein, Protein Sci., 14, 936–941.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Youell, J., Fordham, D., and Firman, K. (2011) Production and single-step purification of EGFP and a biotinylated version of the human rhinovirus 14 3C protease, Protein Express. Purif., 79, 258–262.CrossRefGoogle Scholar
  98. 98.
    Mao, H. (2004) A self-cleavable sortase fusion for onestep purification of free recombinant proteins, Protein Express. Purif., 37, 253–263.CrossRefGoogle Scholar
  99. 99.
    Myscofski, D. M., Dutton, E. K., Cantor, E., Zhang, A., and Hruby, D. E. (2001) Cleavage and purification of intein fusion proteins using the Streptococcus gordonii SPEX system, Prep. Biochem. Biotechnol., 31, 275–290.PubMedCrossRefGoogle Scholar
  100. 100.
    Lu, W., Sun, Z., Tang, Y., Chen, J., Tang, F., Zhang, J., and Liu, J. N. (2011) Split intein facilitated tag affinity purification for recombinant proteins with controllable tag removal by inducible auto-cleavage, J. Chromatogr. A, 1218, 2553–2560.PubMedCrossRefGoogle Scholar
  101. 101.
    Rodriguez, V., Lascani, J., Asenjo, J. A., and Andrews, B. A. (2015) Production of cell-penetrating peptides in Escherichia coli using an intein-mediated system, Appl. Biochem. Biotechnol., 175, 3025–3037.PubMedCrossRefGoogle Scholar
  102. 102.
    Kenig, M., Peternel, S., Gaberc-Porekar, V., and Menart, V. (2006) Influence of the protein oligomericity on final yield after affinity tag removal in purification of recombinant proteins, J. Chromatogr. A, 1101, 293–306.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. N. Kosobokova
    • 1
    Email author
  • K. A. Skrypnik
    • 1
  • V. S. Kosorukov
    • 1
  1. 1.Blokhin Russian Cancer Research CenterMoscowRussia

Personalised recommendations