Biochemistry (Moscow)

, Volume 81, Issue 2, pp 152–162 | Cite as

Express sequence tag analysis – Identification of anseriformes trypsin genes from full-length cDNA library of the duck (Anas platyrhynchos) and characterization of their structure and function

  • Haining YuEmail author
  • Shasha Cai
  • Jiuxiang Gao
  • Chen Wang
  • Xue Qiao
  • Hui Wang
  • Lan Feng
  • Yipeng WangEmail author


Trypsins are key proteins important in animal protein digestion by breaking down the peptide bonds on the carboxyl side of lysine and arginine residues, hence it has been used widely in various biotechnological processes. In the current study, a full-length cDNA library with capacity of 5·105 CFU/ml from the duck (Anas platyrhynchos) was constructed. Using express sequence tag (EST) sequencing, genes coding two trypsins were identified and two full-length trypsin cDNAs were then obtained by rapid-amplification of cDNA end (RACE)-PCR. Using Blast, they were classified into the trypsin I and II subfamilies, but both encoded a signal peptide, an activation peptide, and a 223-a.a. mature protein located in the C-terminus. The two deduced mature proteins were designated as trypsin-IAP and trypsin-IIAP, and their theoretical isoelectric points (pI) and molecular weights (MW) were 7.99/23466.4 Da and 4.65/24066.0 Da, respectively. Molecular characterizations of genes were further performed by detailed bioinformatics analysis. Phylogenetic analysis revealed that trypsin-IIAP has an evolution pattern distinct from trypsin-IAP, suggesting its evolutionary advantage. Then the duck trypsin-IIAP was expressed in an Escherichia coli system, and its kinetic parameters were measured. The three dimensional structures of trypsin-IAP and trypsin-IIAP were predicted by homology modeling, and the conserved residues required for functionality were identified. Two loops controlling the specificity of the trypsin and the substrate-binding pocket represented in the model are almost identical in primary sequences and backbone tertiary structures of the trypsin families.

Key words

Anseriformes Anas platyrhynchos trypsin molecular cloning expression structure and function 



complementary DNA


express sequence tags


fast protein liquid chromatography


open reading frame


polymerase chain reaction


rapid-amplification of cDNA ends


5′-untranslated region


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rawlings, N. D., and Barrett, A. J. (1994) Families of serine peptidases, Methods Enzymol., 244, 19–61.CrossRefPubMedGoogle Scholar
  2. 2.
    Szenthe, B., Frost, C., Szilagyi, L., Patthy, A., Naude, R., and Graf, L. (2005) Cloning and expression of ostrich trypsinogen: an avian trypsin with a highly sensitive autolysis site, Biochim. Biophys. Acta, 1748, 35–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang, K., Gan, L., Lee, I., and Hood, L. (1995) Isolation and characterization of the chicken trypsinogen gene family, Biochem. J., 307, 471–479.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Le Huerou, I., Wicker, C., Guilloteau, P., Toullec, R., and Puigserver, A. (1990) Isolation and nucleotide sequence of cDNA clone for bovine pancreatic anionic trypsinogen. Structural identity within the trypsin family, Eur. J. Biochem., 193, 767–773.CrossRefPubMedGoogle Scholar
  5. 5.
    Hermodson, M. A., Ericsson, L. H., Neurath, H., and Walsh, K. A. (1973) Determination of the amino acid sequence of porcine trypsin by sequenator analysis, Biochemistry, 12, 3146–3153.CrossRefPubMedGoogle Scholar
  6. 6.
    Emi, M., Nakamura, Y., Ogawa, M., Yamamoto, T., Nishide, T., Mori, T., and Matsubara, K. (1986) Cloning, characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens, Gene, 41, 305–310.PubMedGoogle Scholar
  7. 7.
    Tani, T., Kawashima, I., Mita, K., and Takiguchi, Y. (1990) Nucleotide sequence of the human pancreatic trypsinogen III cDNA, Nucleic Acids Res., 18, 1631.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Wiegand, U., Corbach, S., Minn, A., Kang, J., and MullerHill, B. (1993) Cloning of the cDNA encoding human brain trypsinogen and characterization of its product, Gene, 136, 167–175.CrossRefPubMedGoogle Scholar
  9. 9.
    Titani, K., Ericsson, L. H., Neurath, H., and Walsh, K. A. (1975) Amino acid sequence of dogfish trypsin, Biochemistry, 14, 1358–1366.CrossRefPubMedGoogle Scholar
  10. 10.
    Stevenson, B. J., Hagenbuchle, O., and Wellauer, P. K. (1986) Sequence organization and transcriptional regulation of the mouse elastase II and trypsin genes, Nucleic Acids Res., 14, 8307–8330.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Craik, C. S., Choo, Q. L., Swift, G. H., Quinto, C., MacDonald, R. J., and Rutter, W. J. (1984) Structure of two related rat pancreatic trypsin genes, J. Biol. Chem., 259, 14255–14264.PubMedGoogle Scholar
  12. 12.
    Fletcher, T. S., Alhadeff, M., Craik, C. S., and Largman, C. (1987) Isolation and characterization of a cDNA encoding rat cationic trypsinogen, Biochemistry, 26, 3081–3086.CrossRefPubMedGoogle Scholar
  13. 13.
    Lutcke, H., Rausch, U., Vasiloudes, P., Scheele, G. A., and Kern, H. F. (1989) A fourth trypsinogen (P23) in the rat pancreas induced by CCK, Nucleic Acids Res., 17, 6736.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    MacDonald, R. J., Stary, S. J., and Swift, G. H. (1982) Two similar but non-allelic rat pancreatic trypsinogens. Nucleotide sequences of the cloned cDNAs, J. Biol. Chem., 257, 9724–9732.PubMedGoogle Scholar
  15. 15.
    Kraut, J. (1977) Serine proteases: structure and mechanism of catalysis, Annu. Rev. Biochem., 46, 331–358.CrossRefPubMedGoogle Scholar
  16. 16.
    Ma, W., Tang, C., and Lai, L. (2005) Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant, Biophys. J., 89, 1183–1193.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Salameh, M. A., and Radisky, E. S. (2013) Biochemical and structural insights into mesotrypsin: an unusual human trypsin, Int. J. Biochem. Mol. Biol., 4, 129–139.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Douglas, S. E., and Gallant, J. W. (1998) Isolation of cDNAs for trypsinogen from the winter flounder, Pleuronectes americanus, J. Mar. Biotechnol., 6, 214–219.PubMedGoogle Scholar
  19. 19.
    Gudmundsdottir, A., Gudmundsdottir, E., Oskarsson, S., Bjarnason, J. B., Eakin, A. K., and Craik, C. S. (1993) Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen, Eur. J. Biochem., 217, 1091–1097.CrossRefPubMedGoogle Scholar
  20. 20.
    Manchado, M., Infante, C., Asensio, E., Crespo, A., Zuasti, E., and Canavate, J. P. (2008) Molecular characterization and gene expression of six trypsinogens in the flatfish Senegalese sole (Solea senegalensis Kaup) during larval development and in tissues, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 149, 334–344.CrossRefPubMedGoogle Scholar
  21. 21.
    Suzuki, T., Srivastava, A. S., and Kurokawa, T. (2002) cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 131, 63–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Roach, J. C., Wang, K., Gan, L., and Hood, L. (1997) The molecular evolution of the vertebrate trypsinogens, J. Mol. Evol., 45, 640–652.CrossRefPubMedGoogle Scholar
  23. 23.
    Ma, D., Wang, Y., Yang, H., Wu, J., An, S., Gao, L., Xu, X., and Lai, R. (2009) Anti-thrombosis repertoire of bloodfeeding horsefly salivary glands, Mol. Cell. Proteom., 8, 2071–2079.CrossRefGoogle Scholar
  24. 24.
    Xu, X., Yang, H., Ma, D., Wu, J., Wang, Y., Song, Y., Wang, X., Lu, Y., Yang, J., and Lai, R. (2008) Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands, Mol. Cell. Proteom., 7, 582–590.CrossRefGoogle Scholar
  25. 25.
    Bode, W., and Schwager, P. (1975) The refined crystal structure of bovine beta-trypsin at 1.8 Å resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0, J. Mol. Biol., 98, 693–717.PubMedGoogle Scholar
  26. 26.
    Vajda, T., and Szabo, T. (1976) Specificity of trypsin and alpha-chymotrypsin towards neutral substrates, Acta Biochim. Biophys. Acad. Sci. Hung., 11, 287–294.PubMedGoogle Scholar
  27. 27.
    Hsu, R. L., Lee, K. T., Wang, J. H., Lee, L. Y., and Chen, R. P. (2009) Amyloid-degrading ability of nattokinase from Bacillus subtilis natto, J. Agric. Food Chem., 57, 503–508.CrossRefPubMedGoogle Scholar
  28. 28.
    Adair, J. E., Stober, V., Sobhany, M., Zhuo, L., Roberts, J. D., Negishi, M., Kimata, K., and Garantziotis, S. (2009) Inter-alpha-trypsin inhibitor promotes bronchial epithelial repair after injury through vitronectin binding, J. Biol. Chem., 284, 16922–16930.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Himmelfarb, M., Klopocki, E., Grube, S., Staub, E., Klaman, I., Hinzmann, B., Kristiansen, G., Rosenthal, A., Durst, M., and Dahl, E. (2004) ITIH5, a novel member of the inter-alpha-trypsin inhibitor heavy chain family is downregulated in breast cancer, Cancer Lett., 204, 69–77.PubMedGoogle Scholar
  30. 30.
    Sahin-Toth, M. (2000) Human cationic trypsinogen. Role of Asn21 in zymogen activation and implications in hereditary pancreatitis, J. Biol. Chem., 275, 22750–22755.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen, J. M., Kukor, Z., Marechal, C., Toth, M., Tsakiris, L., Raguenes, O., Ferec, C., and Sahin-Toth, M. (2003) Evolution of trypsinogen peptides, Mol. Biol. Evol., 20, 1767–1777.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Marine Biological Technology, School of Life Science and BiotechnologyDalian University of TechnologyDalian, LiaoningChina
  2. 2.College of Pharmaceutical SciencesSoochow UniversitySuzhou, JiangsuChina

Personalised recommendations