Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 2, pp 141–151 | Cite as

Plant DNA methyltransferase genes: Multiplicity, expression, methylation patterns

  • V. V. Ashapkin
  • L. I. Kutueva
  • B. F. Vanyushin
Article

Abstract

Expression and methylation patterns of genes encoding DNA methyltransferases and their functionally related proteins were studied in organs of Arabidopsis thaliana plants. Genes coding for the major maintenance-type DNA methyltransferases, MET1 and CMT3, and the major de novo-type DNA methyltransferase, DRM2, are actively expressed in all organs. Similar constitutively active expression was observed for genes encoding their functionally related proteins, a histone H3K9 methyltransferase KYP and a catalytically non-active protein DRM3. Expression of the MET1 and CMT3 genes is significantly lower in developing endosperm compared with embryo. Vice versa, expression of the MET2a, MET2b, MET3, and CMT2 genes in endosperm is much more active compared with embryo. A special maintenance DNA methylation system seems to operate in endosperm. The DNMT2 and N6AMT genes encoding putative methyltransferases are constitutively expressed at low levels. CMT1 and DRM1 genes are expressed rather weakly in all investigated organs. Most of the studied genes have methylation patterns conforming to the “body-methylated gene” prototype. A peculiar feature of the MET family genes is methylation at all three possible site types (CG, CHG, and CHH). The most weakly expressed among genes of their respective families, CMT1 and DRM1, are practically unmethylated. The MET3 and N6AMT genes have unusual methylation patterns, promoter region, and most of the gene body devoid of any methylation, and the 3'-end proximal part of the gene body is highly methylated.

Key words

DNA methylation DNA methyltransferase gene expression quantitative PCR bisulfite sequencing Arabidopsis thaliana 

Abbreviations

m5C

5-methylcytosine

Nm6A

N6-methyladenine

Nm4C

N4-methylcytosine

Nm2G

N2-methylguanine

RdDM

RNA-directed DNA methylation

siRNA

small interfering RNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feng, S., and Jacobsen, S. E. (2011) Epigenetic modifications in plants: an evolutionary perspective, Curr. Opin. Plant Biol., 14, 179–186.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Vanyushin, B. F., and Ashapkin, V. V. (2011) DNA methylation in higher plants: past, present and future, Biochim. Biophys. Acta, 1809, 360–368.CrossRefPubMedGoogle Scholar
  3. 3.
    Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M., and Jacobsen, S. E. (2008) Shotgun bisulfite sequencing of the Arabidopsis genome reveals DNA methylation patterning, Nature, 452, 215–219.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H., and Ecker, J. R. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell, 133, 523–536.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Vanyushin, B. F., and Ashapkin, V. V. (2009) DNA Methylation in Plants, Nova Science Publishers Inc., N. Y. Google Scholar
  6. 6.
    Buryanov, Ya. I., and Shevchuk, T. V. (2005) DNA methyltransferases and structural-functional specificity of eukaryotic DNA modification, Biochemistry (Moscow), 70, 730–742.CrossRefGoogle Scholar
  7. 7.
    Goll, M. G., and Bestor, T. H. (2005) Eukaryotic cytosine methyltransferases, Annu. Rev. Biochem., 74, 481–514.CrossRefPubMedGoogle Scholar
  8. 8.
    Pavlopoulou, A., and Kossida, S. (2007) Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution, Genomics, 90, 530–541.PubMedGoogle Scholar
  9. 9.
    Woo, H. R., Dittmer, T. A., and Richards, E. J. (2008) Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis, PLoS Genet., 4, e1000156.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Du, J., Zhong, X., Bernatavichute, Y. V., Stroud, H., Feng, S., Caro, E., Vashisht, A. A., Terragni, J., Chin, H. G., Tu, A., Hetzel, J., Wohlschlegel, J. A., Pradhan, S., Patel, D. J., and Jacobsen, S. E. (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants, Cell, 151, 167–180.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Johnson, L. M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., and Jacobsen, S. E. (2007) The SRA methylcytosine-binding domain links DNA and histone methylation, Curr. Biol., 17, 379–384.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cao, X., and Jacobsen, S. E. (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing, Curr. Biol., 12, 1138–1144.CrossRefPubMedGoogle Scholar
  13. 13.
    Cao, X., Aufsatz, W., Zilberman, D., Mette, M. F., Huang, M. S., Matzke, M., and Jacobsen, S. E. (2003) Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation, Curr. Biol., 13, 2212–2217.CrossRefPubMedGoogle Scholar
  14. 14.
    Johnson, L. M., Law, J. A., Khattar, A., Henderson, I. R., and Jacobsen, S. E. (2008) SRA-domain proteins required for DRM2-mediated de novo DNA methylation, PLoS Genet., 4, e1000280.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Zhang, X., and Jacobsen, S. E. (2006) Genetic analyses of DNA methyltransferases in Arabidopsis thaliana, Cold Spring Harb. Symp. Quant. Biol., 71, 439–447.CrossRefPubMedGoogle Scholar
  16. 16.
    Ashapkin, V. V., Kutueva, L. I., and Vanyushin, B. F. (2002) The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues, FEBS Lett., 532, 367–372.CrossRefPubMedGoogle Scholar
  17. 17.
    Perry, S. E., and Wang, H. (2003) Rapid isolation of Arabidopsis thaliana developing embryos, BioTechniques, 35, 278–282.PubMedGoogle Scholar
  18. 18.
    Ashapkin, V. V., Linkova, N. S., Khavinson, V. Kh., and Vanyushin, B. F. (2015) Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells, Biochemistry (Moscow), 80, 310–322.CrossRefGoogle Scholar
  19. 19.
    Suzuki, Y., Kawazu, T., and Koyama, H. (2004) RNA isolation from siliques, dry seeds, and other tissues of Arabidopsis thaliana, BioTechniques, 37, 542–544.PubMedGoogle Scholar
  20. 20.
    Ashapkin, V. V., Kutueva, L. I., and Vanyushin, B. F. (2011) Is the cytosine DNA methyltransferase gene MET1 regulated by DNA methylation in Arabidopsis thaliana plants? Russ. J. Genet., 47, 279–288.CrossRefGoogle Scholar
  21. 21.
    Pagnussat, G. C., Yu, H.-J., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., Capron, A., Xie, L.-F., Ye, D., and Sundaresan, V. (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis, Development, 132, 603–614.CrossRefPubMedGoogle Scholar
  22. 22.
    Makarevich, G., Villar, C. B. R., Erilova, A., and Koehler, C. (2008) Mechanism of PHERES1 imprinting in Arabidopsis, J. Cell Sci., 121, 906–912.CrossRefPubMedGoogle Scholar
  23. 23.
    Hsieh, T.-F., Shin, J., Uzawa, R., Silva, P., Cohen, S., Bauer, M. J., Hashimoto, M., Kirkbride, R. C., Harada, J. J., Zilberman, D., and Fischer, R. L. (2011) Regulation of imprinted gene expression in Arabidopsis endosperm, Proc. Natl. Acad. Sci. USA, 108, 1755–1762.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Jullien, P. E., Susaki, D., Yelagandula, R., Higashiyama, T., and Berger, F. (2012) DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana, Curr. Biol., 22, 1825–1830.CrossRefPubMedGoogle Scholar
  25. 25.
    Zemach, A., Kim, M. Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S. L., and Zilberman, D. (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1containing heterochromatin, Cell, 153, 193–205.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., Patel, D. J., and Jacobsen, S. E. (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis, Nat. Struct. Mol. Biol., 21, 64–72.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Henderson, I. R., Deleris, A., Wong, W., Zhong, X., Chin, H. G., Horwitz, G. A., Kelly, K. A., Pradhan, S., and Jacobsen, S. E. (2010) The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana, PLoS Genet., 6, e1001182.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Costa-Nunes, P., Kim, J. Y., Hong, E., and Pontes, O. (2014) The cytological and molecular role of domains rearranged methyltransferase3 in RNA-dependent DNA methylation of Arabidopsis thaliana, BMC Res. Notes, 7, 721.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Zhong, X., Hale, C. J., Nguyen, M., Ausin, I., Groth, M., Hetzel, J., Vashisht, A. A., Henderson, I. R., Wohlschlegel, J. A., and Jacobsen, S. E. (2015) Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis, Proc. Natl. Acad. Sci. USA, 112, 911–916.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X., Golic, K. G., Jacobsen, S. E., and Bestor, T. H. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 311, 395–398.CrossRefPubMedGoogle Scholar
  31. 31.
    Song, Y., Wu, K., Dhaubhadel, S., An, L., and Tian, L. (2010) Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity, Biochem. Biophys. Res. Commun., 396, 187–192.CrossRefPubMedGoogle Scholar
  32. 32.
    Shorning, B. Yu., and Vanyushin, B. F. (2001) Putative DNA-(amino)methyltransferases in eukaryotes, Biochemistry (Moscow), 66, 753–762.CrossRefGoogle Scholar
  33. 33.
    Chen, P., Jager, G., and Zheng, B. (2010) Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana, BMC Plant Biol., 10, 201.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Greer, E. L., Blanco, M. A., Gu, L., Sendinc, E., Liu, J., Aristizabal-Corrales, D., Hsu, C.-H., Aravind, L., He, C., and Shi, Y. (2015) DNA methylation on N6-adenine in C. elegans, Cell, 161, 868–878.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Ashapkin
    • 1
  • L. I. Kutueva
    • 1
  • B. F. Vanyushin
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations