Advertisement

Biochemistry (Moscow)

, Volume 81, Issue 2, pp 101–113 | Cite as

Mitochondrial genome structure of photosynthetic eukaryotes

  • N. P. YurinaEmail author
  • M. S. Odintsova
Review

Abstract

Current ideas of plant mitochondrial genome organization are presented. Data on the size and structural organization of mtDNA, gene content, and peculiarities are summarized. Special emphasis is given to characteristic features of the mitochondrial genomes of land plants and photosynthetic algae that distinguish them from the mitochondrial genomes of other eukaryotes. The data published before the end of 2014 are reviewed.

Key words

mitochondria photosynthetic eukaryotes mitochondrial genome 

Abbreviations

cpDNA

chloroplast DNA

HGT

horizontal gene transfer

MORF/RIP

multiple organellar RNA editing factor interacting proteins

PPR

pentatricopeptide repeat

SU

subunit

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lohse, M., Drechsel, O., Kahlau, S., and Bock, R. (2013) Organellar Genome DRAW–a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids Res., 41, 575–581.CrossRefGoogle Scholar
  2. 2.
    Huot, J. L., Enkler, L., Megel, C., Karim, L., Laporte, D., Becker, H. D., Duchene, A. M., Sissler, M., and MarechalDrouard, L. (2014) Idiosyncrasies in decoding mitochondrial genomes, Biochimie, 100, 95–106.CrossRefPubMedGoogle Scholar
  3. 3.
    Sugiyama, Y., Watase, Y., Nagase, M., Makita, N., Yagura, S., Hirai, A., and Sugiura, M. (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants, Mol. Genet. Genom., 272, 603–615.CrossRefGoogle Scholar
  4. 4.
    Rice, D. W., Alverson, A. J., Richardson, A. O., Young, G. J., Sanchez-Puerta, M. V., Munzinger, J., Barry, K., Boore, J. L., Yan Zhang, Y., De Pamphilis, C. W., Knox, E. B., and Palmer, J. D. (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella, Science, 342, 1468–1473.CrossRefPubMedGoogle Scholar
  5. 5.
    Kubo, T., and Newton, K. J. (2008) Angiosperm mitochondrial genomes and mutations, Mitochondrion, 8, 5–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Danilenko, N. P., and Davidenko, O. G. (2003) Worlds of Organellar Genomes [in Russian], Tekhnologiya, Minsk.Google Scholar
  7. 7.
    Wang, Y., Pu Chu, P., Yang, Q., Chang, S., Chen, J., Hu, M., and Guan, R. (2014) Complete mitochondrial genome of Eruca sativa Mill (Garden Rocket), PLoS One, 9, e105748.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Wang, W., Wu, Y., and Messing, J. (2012) The mitochondrial genome of an aquatic plant, Spirodela polyrhiza, PLoS One, 7, e46747.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Richardson, A. O., Rice, D. W., Young, G. J., Alverson, A. J., and Palmer, J. D. (2013) The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate, BMC Biol., 11, 29.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kolesnikov, A. A., and Gerasimov, E. S. (2012) Diversity of mitochondrial genome organization, Biochemistry (Moscow), 77, 1424–1435.CrossRefGoogle Scholar
  11. 11.
    Gualberto, J. M., Mileshina, D., Wallet, C., Niazi, A. K., Weber-Lotfi, F., and Dietrich, A. (2014) The plant mitochondrial genome: dynamics and maintenance, Biochimie, 100, 107–120.CrossRefPubMedGoogle Scholar
  12. 12.
    Alverson, A. J., Rice, D. W., Dickinson, S., Barry, K., and Palmer, J. D. (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber, Plant Cell, 23, 2499–2513.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Smith, D. R., and Lee, R. W. (2009) The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA, BMC Genom., 10, 132.CrossRefGoogle Scholar
  14. 14.
    Oudot-Le Secq, M. P., and Green, B. R. (2011) Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, Gene, 476, 20–26.CrossRefPubMedGoogle Scholar
  15. 15.
    Smith, D. R., Lee, R. W., Cushman, J. C., Magnuson, J. K., Tran, D., and Polle, J. E. (2010) The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA, BMC Plant Biol., 10, 83.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Smith, D. R., Hua, J., Archibald, J. M., and Lee, R. W. (2013) Palindromic genes in the linear mitochondrial genome of the nonphotosynthetic green alga Polytomella magna, Genome Biol. Evol., 5, 1661–1667.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Smith, D. R., and Keeling, P. J. (2013) Gene conversion shapes linear mitochondrial genome architecture, Genome Biol. Evol., 5, 905–912.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Woloszynska, M., Kmiec, B., Mackiewicz, P., and Janska, H. (2006) Copy number of bean mitochondrial genes estimated by real-time PCR does not correlate with the number of gene loci and transcript levels, Plant Mol. Biol., 61, 1–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Sloan, D. B. (2013) One ring to rule them all? Genome sequencing provides new insights into the “master circle” model of plant mitochondrial DNA structure, New Phytol., 200, 978–985.CrossRefPubMedGoogle Scholar
  20. 20.
    McCauley, D. E. (2013) Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes, New Phytol., 4, 966–977.Google Scholar
  21. 21.
    Jeong, H., Lim, J.-M., Park, J., Sim, Y., Choi, H.-G., Lee, J., and Jeong, W.-J. (2014) Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B, BMC Genomics, 15, 286.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Barbrook, A. C., Howe, C. J., Kurniawan, D. P., and Tarr, S. J. (2010) Organization and expression of organellar genomes, Phil. Trans. R. Soc. B, 365, 785–797.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Sloan, D. B., Alverson, A. J., Chuckalovcak, J. P., Wu, M., McCauley, D. E., Palmer, J. D., and Taylor, D. R. (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates, PLoS Biol., 10, e1001241.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Ohyama, K., and Takemura, M. (2008) Molecular evolution of mitochondrial introns in the liverwort Marchantia polymorpha, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 84, 17–23.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Hancock, L., Goff, L., and Lane, C. (2010) Red algae lose key mitochondrial genes in response to becoming parasitic, Genome Biol. Evol., 2, 897–910.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Preuten, T., Cincu, E., Fuchs, J., Zoschke, R., Liere, K., and Borner, T. (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells, Plant J., 64, 948–959.CrossRefPubMedGoogle Scholar
  27. 27.
    Gualberto, J. M., and Kuhn, K. (2014) DNA-binding proteins in plant mitochondria: implications for transcription, Mitochondrion, 19, 323–328.CrossRefPubMedGoogle Scholar
  28. 28.
    Cupp, J. D., and Nielsen, B. L. (2014) Minireview: DNA replication in plant mitochondria, Mitochondrion, 19, 231–237.CrossRefPubMedGoogle Scholar
  29. 29.
    Ohyama, K., Takemura, M., Oda, K., Fukuzawa, H., Kohchi, T., Nakayama, S., Ishizaki, K., Fujisawa, M., and Yamato, K. (2009) Gene content, organization and molecular evolution of plant organellar genomes and sex chromosomes: insights from the case of the liverwort Marchantia polymorpha, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 85, 108–124.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Turmel, M., Otis, C., and Lemieux, C. (2007) An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus, BMC Genomics, 8, 137.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Robbens, S., Derelle, E., Ferraz, C., Wuyts, J., Moreau, H., and Van de Peer, Y. (2007) The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction, Mol. Biol. Evol., 24, 956–968.CrossRefPubMedGoogle Scholar
  32. 32.
    Smith, D. R., Hua, J., and Lee, R. W. (2010) Evolution of linear mitochondrial DNA in three known lineages of Polytomella, Curr. Genet., 56, 427–438.CrossRefPubMedGoogle Scholar
  33. 33.
    Fajardo, D., Schlautman, B., Steffan, S., Polashock, J., Vorsa, N., and Zalap, J. (2014) The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants, Gene, 536, 336–343.CrossRefPubMedGoogle Scholar
  34. 34.
    Teng, C. Y., Dang, Y., Danne, J. C., Waller, R. F., and Green, B. R. (2013) Mitochondrial genes of dinoflagellates are transcribed by a nuclear-encoded single-subunit RNA polymerase, PLoS One, 8, e65387.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Nedelcu, A. M., Lee, R. W., Lemieux, C., Gray, M. W., and Burger, G. (2000) The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome, Genome Res., 10, 819–831.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Turmel, M., Otis, C., and Lemieux, C. (2002) The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants, Proc. Natl. Acad. Sci. USA, 99, 11275–11280.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Takenaka, M., Verbitskiy, D., Zehrmann, A., Hartel, B., Bayer-Csaszar, E., Glass, F., and Brennicke, A. (2014) RNA editing in plant mitochondria-connecting RNA target sequences and acting proteins, Mitochondrion, 19, 191–197.CrossRefPubMedGoogle Scholar
  38. 38.
    Odintsova, M. S., and Yurina, N. P. (2000) RNA editing in plant chloroplasts and mitochondria, Fiziol. Rast., 47, 307–320.Google Scholar
  39. 39.
    Odintsova, M. S., and Yurina, N. P. (2005) Genomics and evolution of cellular organelles, Russ. J. Genet., 41, 957–967.CrossRefGoogle Scholar
  40. 40.
    Oldenkott, B., Yamaguchi, K., Tsujj-Tsukinoki, S., Knie, N., and Knoop, V. (2014) Chloroplast RNA editing going extreme: more than 3400 events of C-to-U editing in the chloroplast transcriptome of the lycophyte Selaginella uncinata, RNA, 20, 1499–1506.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Grienenberger, J. M. (2009) Plant mitochondrial RNA editing: the Strasbourg chapter, IUBMB Life, 61, 1110–1113.CrossRefPubMedGoogle Scholar
  42. 42.
    Fujii, S., and Small, I. (2011) The evolution of RNA editing and pentatricopeptide repeat genes, New Phytol., 191, 37–47.CrossRefPubMedGoogle Scholar
  43. 43.
    Hammani, K., and Giege, P. (2014) RNA metabolism in plant mitochondria, Trends Plant Sci., 19, 380–389.CrossRefPubMedGoogle Scholar
  44. 44.
    Knoop, V. (2013) Plant mitochondrial genome peculiarities evolving in the earliest vascular plant lineages, J. Syst. Evol., 51, 1–12.CrossRefGoogle Scholar
  45. 45.
    Barkan, A., and Small, I. (2014) Pentatricopeptide repeat proteins in plants, Annu. Rev. Plant Biol., 65, 415–442.CrossRefPubMedGoogle Scholar
  46. 46.
    Woloszynska, M., Gola, E. M., and Piechota, J. (2012) Changes in accumulation of heteroplasmic mitochondrial DNA and frequency of recombination via short repeats during plant lifetime in Phaseolus vulgaris, Acta Biochim. Pol., 59, 703–709.PubMedGoogle Scholar
  47. 47.
    Moriyama, T., and Sato, N. (2014) Enzymes involved in organellar DNA replication in photosynthetic eukaryotes, Front. Plant Sci., 5, 480–492.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations