Biochemistry (Moscow)

, Volume 80, Issue 13, pp 1820–1832 | Cite as

Detection of Intermolecular Interactions Based on Surface Plasmon Resonance Registration

  • D. V. Sotnikov
  • A. V. Zherdev
  • B. B. DzantievEmail author


Methods for registration of intermolecular interactions based on the phenomenon of surface plasmon resonance (SPR) have become one of the most efficient tools to solve fundamental and applied problems of analytical biochemistry. Nevertheless, capabilities of these methods are often insufficient to detect low concentrations of analytes or to screen large numbers of objects. That is why considerable efforts are directed at enhancing the sensitivity and efficiency of SPR-based measurements. This review describes the basic principles of the detection of intermolecular interactions using this method, provides a comparison of various types of SPR detectors, and classifies modern approaches to enhance sensitivity and efficiency of measurements.

Key words

surface plasmon resonance, registration of intermolecular interactions, enhancement of analytical signal, multiparametric assay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schasfoort, R. B. M., and Tudos, A. J. (2008) Handbook of Surface Plasmon Resonance, The Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
  2. 2.
    Ivanov, A. S., and Medvedev, A. E. (2015) Optical surface plasmon resonance biosensors in molecular fishing, Biomed. Khim., 61, 231–238.PubMedCrossRefGoogle Scholar
  3. 3.
    Mariani, S., and Minunni, M. (2014) Surface plasmon res-onance applications in clinical analysis, Anal. Bioanal. Chem., 406, 2303–2323.PubMedCrossRefGoogle Scholar
  4. 4.
    Shalabney, A., and Abdulhalim, I. (2011) Sensitivity-enhancement methods for surface plasmon sensors, Laser Photon. Rev., 5, 571–606.CrossRefGoogle Scholar
  5. 5.
    Situ, C., Buijs, J., Mooney, M. H., and Elliott, C. T. (2010) Advances in surface plasmon resonance biosensor technol-ogy towards high-throughput, food-safety analysis, Trends Anal. Chem., 29, 1305–1315.CrossRefGoogle Scholar
  6. 6.
    Yuk, J., Hong, D.-G., Jung, J.-W., Jung, S.-H., Kim, H.-S., Han, J.-A., Kim, Y.-M., and Ha, K.-S. (2006) Sensitivity enhancement of spectral surface plasmon reso-nance biosensors for the analysis of protein arrays, Eur. Biophys. J., 35, 469–476.PubMedCrossRefGoogle Scholar
  7. 7.
    Biacore Sensor Surface Handbook (2005) GE Healthcare Bio-Sciences AB, Uppsala.Google Scholar
  8. 8.
    Oates, T. W. H., Wormeester, H., and Arwin, H. (2011) Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry, Prog. Surf. Sci., 86, 328–376.CrossRefGoogle Scholar
  9. 9.
    Lakowicz, J. R. (2006) Plasmonics in biology and plasmon-controlled fluorescence, Plasmonics, 1, 5–33.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Li, M., Cushing, S. K., and Wu, N. (2015) Plasmon-enhanced optical sensors: a review, Analyst, 140, 386–406.PubMedCrossRefGoogle Scholar
  11. 11.
    De Mol, N. J., and Fischer, M. J. E. (2010) Surface Plasmon Resonance. Methods and Protocols, Springer Science, New York.CrossRefGoogle Scholar
  12. 12.
    Brongersma, M. L., and Kik, P. G. (2007) Surface Plasmon Nanophotonics, Springer Series in Optical Sciences, Vol. 131, Springer Science, Berlin.CrossRefGoogle Scholar
  13. 13.
    Huang, Y. H., Ho, H. P., Wu, S. Y., and Kong, S. K. (2012) Detecting phase shifts in surface plasmon resonance: a review, Adv. Opt. Technol., doi: 10.1155/2012/471957.Google Scholar
  14. 14.
    Homola, J. (2008) Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462–493.PubMedCrossRefGoogle Scholar
  15. 15.
    Tokel, O., Inci, F., and Demirci, U. (2014) Advances in plasmonic technologies for point of care applications, Chem. Rev., 114, 5728–5752.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Otto, A. (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Physik, 216, 398–410.CrossRefGoogle Scholar
  17. 17.
    Kretschmann, E., and Raether, H. (1968) Radiative decay of non-radiative surface plasmons excited by light, Z. Naturforsch., 23A, 2135–2136.Google Scholar
  18. 18.
    Nagata, K., and Handa, H. (2000) Real-Time Analysis of Biomolecular Interactions: Applications of BIACORE, Springer Science, Tokyo.CrossRefGoogle Scholar
  19. 19.
    Jorgenson, R. C., and Yee, S. S. (1993) A fiber-optic chem-ical sensor based on surface plasmon resonance, Sens. Actuators B Chem., 12, 213–220.CrossRefGoogle Scholar
  20. 20.
    Homola, J., Yee, S. S., and Gauglitz, G. (1999) Surface plasmon resonance sensors: review, Sens. Actuators B Chem., 54, 3–15.CrossRefGoogle Scholar
  21. 21.
    Cullen, D. C., Brown, R. G., and Lowe, C. R. (1987) Detection of immunocomplex formation via surface plas-mon resonance on gold coated diffraction gratings, Biosensors, 3, 211–225.PubMedCrossRefGoogle Scholar
  22. 22.
    Cullen, D. C., and Lowe, C. R. (1990) A direct surface plasmon-polariton immunosensor: preliminary investiga-tion of the non-specific adsorption of serum components to the sensor interface, Sens. Actuators B Chem., 1, 576–579.CrossRefGoogle Scholar
  23. 23.
    Jory, M. J., Vukusic, P. S., and Sambles, J. R. (1994) Development of a prototype gas sensor using surface plasmon resonance on gratings, Sens. Actuators B Chem., 17, 203–209.CrossRefGoogle Scholar
  24. 24.
    Mayer, K. M., and Hafner, J. H. (2011) Localized surface plasmon resonance sensors, Chem. Rev., 111, 3828–3857.PubMedCrossRefGoogle Scholar
  25. 25.
    Homola, J. (2006) Surface plasmon resonance based sen-sors, in Springer Series on Chemical Sensors and Biosensors, Ser. 4, Springer Science, Berlin.CrossRefGoogle Scholar
  26. 26.
    McNaught, A. D., and Wilkinson, A. (1997) IUPAC Compendium of Chemical Terminology. The Gold Book (2nd Edn.) Blackwell Science Publications, Oxford.Google Scholar
  27. 27.
    Inczedy, J., Lengyel, T., and Ure, A. M. (1998) IUPAC. Compendium of Analytical Nomenclature. The Orange Book (3rd Edn.) Blackwell Science Publications, Oxford.Google Scholar
  28. 28.
    Huang, Y. H., Ho, H. P., Wu, S. Y., Kong, S. K., Wong, W. W., and Shum, P. (2011) Phase sensitive SPR sensor for wide dynamic range detection, Opt. Lett., 36, 4092–4094.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang, Y. H., Ho, H. P., Kong, S. K., and Kabashin, A. V. (2012) Phase-sensitive surface plasmon resonance biosen-sors: methodology, instrumentation and applications, Ann. Phys., 524, 637–662.CrossRefGoogle Scholar
  30. 30.
    Hermanson, G. T. (2008) Bioconjugate Techniques (2nd Edn.) Academic Press, San Diego.Google Scholar
  31. 31.
    D’Agata, R., and Spoto, G. (2012) Artificial DNA and sur-face plasmon resonance, Artif. DNA PNA XNA, 3, 45–52.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Luzi, E., Minunni, M., Tombelli, S., and Mascini, M. (2003) New trends in affinity sensing: aptamers for ligand binding, Trends Anal. Chem., 22, 810–818.CrossRefGoogle Scholar
  33. 33.
    Hendrickson, O. D., Zherdev, A. V., and Dzantiev, B. B. (2006) Molecularly imprinted polymers and their use in biological analysis, Usp. Biol. Khim., 46, 149–192.Google Scholar
  34. 34.
    Knoll, W., Liley, M., Piscevic, D., Spinke, J., and Tarlov, M. J. (1997) Supramolecular architectures for the func-tionalization of solid surfaces, Adv. Biophys., 34, 231–251.PubMedCrossRefGoogle Scholar
  35. 35.
    Brockman, J. M., Frutos, A. G., and Corn, R. M. (1999) A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein–DNA inter-actions with surface plasmon resonance imaging, J. Am. Chem. Soc., 121, 8044–8051.CrossRefGoogle Scholar
  36. 36.
    D’Agata, R., Corradini, R., Grasso, G., Marchelli, R., and Spoto, G. (2008) Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging, Chembiochem, 9, 2067–2070.PubMedCrossRefGoogle Scholar
  37. 37.
    Fang, S., Lee, H. J., Wark, A. W., and Corn, R. M. (2006) Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenyla-tion reactions, J. Am. Chem. Soc., 128, 14044–14046.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Egawa, Y., Miki, R., and Seki, T. (2014) Colorimetric sugar sensing using boronic acid-substituted azobenzenes, Materials, 7, 1201–1220.CrossRefGoogle Scholar
  39. 39.
    Makaraviciute, A., and Ramanaviciene, A. (2013) Site-directed antibody immobilization techniques for immunosensors, Biosens. Bioelectron., 50, 460–471.PubMedCrossRefGoogle Scholar
  40. 40.
    Chivers, C. E., Crozat, E., Chu, C., Moy, V. T., Sherratt, D. J., and Howarth, M. (2010) A streptavidin variant with slower biotin dissociation and increased mechanostability, Nat. Methods, 7, 391–393.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sipova, H., and Homola, J. (2013) Surface plasmon resonance sensing of nucleic acids: a review, Anal. Chim. Acta, 773, 9–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Luppa, P. B., Sokoll, L. J., and Chan, D. W. (2001) Immunosensors–principles and applications to clinical chemistry, Clin. Chim. Acta, 314, 1–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Mullett, W. M., Lai, E. P., and Yeung, J. M. (2000) Surface plasmon resonance-based immunoassays, Methods, 22, 77–91.PubMedCrossRefGoogle Scholar
  44. 44.
    D’Agata, R., and Spoto, G. (2013) Surface plasmon reso-nance imaging for nucleic acid detection, Anal. Bioanal. Chem., 405, 573–584.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhen, G., Falconnet, D., Kuennemann, E., Voros, J., Spencer, N. D., Textor, M., and Zurcher, S. (2006) Nitrilotriacetic acid functionalized graft copolymers: a polymeric interface for selective and reversible binding of histidine-tagged proteins, Adv. Funct. Mater., 16, 243–251.CrossRefGoogle Scholar
  46. 46.
    Kabashin, A. V., and Nikitin, P. I. (1997) Interferometer based on a surface plasmon resonance for sensor applica-tions, Quantum Elec., 27, 653–654.CrossRefGoogle Scholar
  47. 47.
    Kabashin, A. V., and Nikitin, P. I. (1998) Surface plasmon resonance interferometer for bio-and chemical-sensors, Opt. Commun., 150, 5–8.CrossRefGoogle Scholar
  48. 48.
    Yuan, W., Ho, H. P., Wong, C. L., Kong, S. K., and Lin, C. (2007) Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity, IEEE Sens. J., 7, 70–73.CrossRefGoogle Scholar
  49. 49.
    Ho, H. P., Yuan, W., Wong, C. L., Wu, S. Y., Suen, Y. K., Kong, S. K., and Lin, C. (2007) Sensitivity enhancement based on application of multi-pass interferometry in phase-sensitive surface plasmon resonance biosensor, Opt. Commun., 275, 491–496.CrossRefGoogle Scholar
  50. 50.
    Kochergin, V. E., Valeiko, M. V., Beloglazov, A. A., Ksenevich, T. I., and Nikitin, P. I. (1998) Visualization of the angular dependence of the reflected-radiation phase under conditions of a surface plasmon resonance and its sensor applications, Quantum Elec., 28, 835–839.CrossRefGoogle Scholar
  51. 51.
    Nikitin, P. I., Beloglazov, A. A., Kochergin, V. E., Valeiko, M. V., and Ksenevich, T. I. (1999) Surface plasmon reso-nance interferometry for biological and chemical sensing, Sens. Actuators B Chem., 54, 43–50.CrossRefGoogle Scholar
  52. 52.
    Chen, S. J., Su, Y. D., Hsiu, F. M., Tsou, C. Y., and Chen, Y. K. (2005) Surface plasmon resonance phase-shift inter-ferometry: real-time DNA microarray hybridization analy-sis, J. Biomed. Opt., 10, doi: 10.1117/1.1924713.Google Scholar
  53. 53.
    Wu, S. Y., Ho, H. P., Law, W. C., Lin, C., and Kong, S. K. (2004) Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration, Opt. Lett., 29, 2378–2380.PubMedCrossRefGoogle Scholar
  54. 54.
    Kabashin, A. V., Kochergin, V. E., and Nikitin, P. I. (1999) Surface plasmon resonance bio-and chemical sensors with phase-polarization contrast, Sens. Actuators B Chem., 54, 51–56.CrossRefGoogle Scholar
  55. 55.
    Chiang, H. P., Lin, J. L., and Chen, Z. W. (2006) High sen-sitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths, Appl. Phys. Lett., 88, doi: 10.1063/1.2192622.Google Scholar
  56. 56.
    Chiang, H. P., Lin, J. L., Chang, R., Su, S. Y., and Leung, P. T. (2005) High-resolution angular measurement using surface plasmon resonance via phase interrogation at opti-mal incident wavelengths, Opt. Lett., 30, 2727–2729.PubMedCrossRefGoogle Scholar
  57. 57.
    Nelson, S. G., Johnston, K. S., and Yee, S. S. (1996) High sensitivity surface plasmon resonance sensor based on phase detection, Sens. Actuators B Chem., 35, 187–191.CrossRefGoogle Scholar
  58. 58.
    Li, Y. C., Chang, Y. F., Su, L. C., and Chou, C. (2008) Differential-phase surface plasmon resonance biosensor, Anal. Chem., 80, 5590–5595.PubMedCrossRefGoogle Scholar
  59. 59.
    Zybin, A., Grunwald, C., Mirsky, V. M., Kuhlmann, J., Wolfbeis, O. S., and Niemax, K. (2005) Double-wavelength technique for surface plasmon resonance measurements: basic concept and applications for single sensors and two-dimensional sensor arrays, Anal. Chem., 77, 2393–2399.PubMedCrossRefGoogle Scholar
  60. 60.
    Palagushkin, A. N., Prokopenko, S. A., and Sergeev, A. P. (2009) Plasmonic holographic nanostructures, Opt. Mem. Neural Networks, 18, 156–163.CrossRefGoogle Scholar
  61. 61.
    Frutos, A. G., Weibel, S. C., and Corn, R. M. (1999) Near-infrared surface plasmon resonance measurements of ultra-thin films. 2. Fourier transform SPR spectroscopy, Anal. Chem., 71, 3935–3940.CrossRefGoogle Scholar
  62. 62.
    Homola, J., Dostalek, J., Chen, S., Rasooly, A., Jiang, S., and Yee, S. S. (2002) Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk, Int. J. Food Microbiol., 75, 61–69.PubMedCrossRefGoogle Scholar
  63. 63.
    Homola, J., Koudela, I., and Yee, S. S. (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, Sens. Actuators B Chem., 54, 16–24.CrossRefGoogle Scholar
  64. 64.
    Lecaruyer, P., Canva, M., and Rolland, J. (2007) Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method, Appl. Opt., 46, 2361–2369.PubMedCrossRefGoogle Scholar
  65. 65.
    Sarid, D. (1981) Long-range surface-plasma wave on very thin metal films, Phys. Rev. Lett., 47, 1927–1930.CrossRefGoogle Scholar
  66. 66.
    Slavik, R., and Homola, J. (2007) Ultrahigh resolution long range surface plasmon-based sensor, Sens. Actuators B Chem., 123, 10–12.CrossRefGoogle Scholar
  67. 67.
    Lahav, A., Auslender, M., and Abdulhalim, I. (2008) Sensitivity enhancement of guided-wave surface-plasmon resonance sensors, Opt. Lett., 33, 2539–2541.PubMedCrossRefGoogle Scholar
  68. 68.
    Wu, L., Chu, H. S., Koh, W. S., and Li, E. P. (2010) Highly sensitive graphene biosensors based on surface plasmon res-onance, Opt. Express, 18, 14395–14400.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang, H., Sun, Y., Gao, S., Zhang, J., Zhang, H., and Song, D. (2013) A novel graphene oxide-based surface plasmon res-onance biosensor for immunoassay, Small, 9, 2537–2540.PubMedCrossRefGoogle Scholar
  70. 70.
    Zeng, S., Baillargeat, D., Ho, H. P., and Yong, K. T. (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, 3426–3452.PubMedCrossRefGoogle Scholar
  71. 71.
    Springer, T., Ermini, M. L., Spackova, B., Jablonku, J., and Homola, J. (2014) Enhancing sensitivity of surface plas-mon resonance biosensors by functionalized gold nanopar-ticles: size matters, Anal. Chem., 86, 10350–10356.PubMedCrossRefGoogle Scholar
  72. 72.
    Kwon, M. J., Lee, J., Wark, A. W., and Lee, H. J. (2012) Nanoparticle-enhanced surface plasmon resonance detec-tion of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes, Anal. Chem., 84, 1702–1707.PubMedCrossRefGoogle Scholar
  73. 73.
    Lyon, L. A., Musick, M. D., and Natan, M. J. (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing, Anal. Chem., 70, 5177–5183.PubMedCrossRefGoogle Scholar
  74. 74.
    Urusov, A. E., Kostenko, S. N., Sveshnikov, P. G., Zherdev, A. V., and Dzantiev, B. B. (2011) Ochratoxin A immunoas-say with surface plasmon resonance registration: lowering limit of detection by the use of colloidal gold immunocon-jugates, Sens. Actuators B Chem., 156, 343–349.CrossRefGoogle Scholar
  75. 75.
    Cao, C., and Sim, S. J. (2007) Signal enhancement of sur-face plasmon resonance immunoassay using enzyme pre-cipitation-functionalized gold nanoparticles: a femtomolar level measurement of anti-glutamic acid decarboxylase antibody, Biosens. Bioelectron., 22, 1874–1880.PubMedCrossRefGoogle Scholar
  76. 76.
    Teramura, Y., Arima, Y., and Iwata, H. (2006) Surface plas-mon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal ampli-fication, Anal. Biochem., 357, 208–215.PubMedCrossRefGoogle Scholar
  77. 77.
    Pollet, J., Delport, F., Janssen, K. P. F., Tran, D. T., Wouters, J., Verbiest, T., and Lammertyn, J. (2011) Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor, Talanta, 83, 1436–1441.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang, J., Munir, A., Zhu, Z., and Zhou, H. S. (2010) Magnetic nanoparticle enhanced surface plasmon reso-nance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small mole-cules, Anal. Chem., 82, 6782–6789.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee, E. G., Park, K. M., Jeong, J. Y., Lee, S. H., Baek, J. E., Lee, H. W., and Chung, B. H. (2011) Carbon nanotube-assisted enhancement of surface plasmon resonance signal, Anal. Biochem., 408, 206–211.PubMedCrossRefGoogle Scholar
  80. 80.
    Severs, A. H., and Schasfoort, R. B. M. (1993) Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles, Biosens. Bioelectron., 8, 365–370.CrossRefGoogle Scholar
  81. 81.
    Wink, T., van Zuilen, S. J., Bult, A., and Van Bennekom, W. P. (1998) Liposome-mediated enhancement of the sensitiv-ity in immunoassays of proteins and peptides in surface plas-mon resonance spectrometry, Anal. Chem., 70, 827–832.PubMedCrossRefGoogle Scholar
  82. 82.
    Situ, C., Crooks, S. R., Baxter, A. G., Ferguson, J., and Elliott, C. T. (2002) On-line detection of sulfamethazine and sulfadiazine in porcine bile using a multi-channel high-throughput SPR biosensor, Anal. Chim. Acta, 473, 143–149.CrossRefGoogle Scholar
  83. 83.
    Cacciatore, G., Eisenberg, S. W., Situ, C., Mooney, M. H., Delahaut, P., Klarenbeek, S., and Elliott, C. T. (2009) Effect of growth-promoting 17β-estradiol, 19-nortestosterone and dexa-methasone on circulating levels of nine potential biomarker candidates in veal calves, Anal. Chim. Acta, 637, 351–359.PubMedCrossRefGoogle Scholar
  84. 84.
    Wang, J., Luo, Y., Zhang, B., Chen, M., Huang, J., Zhang, K., and Liao, P. (2011) Rapid label-free identification of mixed bacterial infections by surface plasmon resonance, J. Transl. Med., 9, 85.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Homola, J., Vaisocherova, H., Dostalek, J., and Piliarik, M. (2005) Multi-analyte surface plasmon resonance biosensing, Methods, 37, 26–36.PubMedCrossRefGoogle Scholar
  86. 86.
    Brockman, J. M., and Fernandez, S. M. (2001) Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing, Am. Lab., 33, 37–40.Google Scholar
  87. 87.
    Baggio, R., Carven, G. J., Chiulli, A., Palmer, M., Stern, L. J., and Arenas, J. E. (2005) Induced fit of an epitope peptide to a monoclonal antibody probed with a novel parallel surface plasmon resonance assay, J. Biol. Chem., 280, 4188–4194.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. V. Sotnikov
    • 1
  • A. V. Zherdev
    • 1
  • B. B. Dzantiev
    • 1
    Email author
  1. 1.Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations