Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 13, pp 1764–1799 | Cite as

Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins

  • A. I. KuzmenkovEmail author
  • E. V. Grishin
  • A. A. Vassilevski
Review

Abstract

Potassium (K+) channels are a widespread superfamily of integral membrane proteins that mediate selective transport of K+ ions through the cell membrane. They have been found in all living organisms from bacteria to higher multicellular animals, including humans. Not surprisingly, K+ channels bind ligands of different nature, such as metal ions, low molecular mass compounds, venom-derived peptides, and antibodies. Functionally these substances can be K+ channel pore blockers or modulators. Representatives of the first group occlude the channel pore, like a cork in a bottle, while the second group of ligands alters the operation of channels without physically blocking the ion current. A rich source of K+ channel ligands is venom of different animals: snakes, sea anemones, cone snails, bees, spiders, and scorpions. More than a half of the known K+ channel ligands of polypeptide nature are scorpion toxins (KTx), all of which are pore blockers. These compounds have become an indispensable molecular tool for the study of K+ channel structure and function. A recent special interest is the possibility of toxin application as drugs to treat diseases involving K+ channels or related to their dysfunction (channelopathies).

Key words

ion channel potassium channel ligand pore blocker modulator venom scorpion toxin 

Abbreviations

4-AP

4-aminopyridine

BKCa

large-conductance calcium-activated K+ channels

CSα/α

cysteine-stabilized helix-loop-helix

CSα/β

cysteine-stabilized α-helix β-sheet

ICK

inhibitor cystine knot

IKCa

intermediate-conductance calcium-activated K+ channels

K+ channels

potassium channels

K2P

two-pore-domain K+ channels

Kir

inward-rectifier K+ channels

KTx

polypeptide K+ channel blockers from scorpion venom

Kv

voltage-gated K+ channels

RP-HPLC

reversed-phase high-performance liquid chromatography

SKCa

small-conductance calcium-activated K+ channels

TEA

tetraethylammonium

TM

transmembrane (segment).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonzalez, C., Baez-Nieto, D., Valencia, I., Oyarzun, I., Rojas, P., Naranjo, D., and Latorre, R. (2012) K(+) chan-nels: function-structural overview, Compr. Physiol., 2, 2087–2149.PubMedGoogle Scholar
  2. 2.
    Kubo, Y., Adelman, J. P., Clapham, D. E., Jan, L. Y., Karschin, A., Kurachi, Y., Lazdunski, M., Nichols, C. G., Seino, S., and Vandenberg, C. A. (2005) International Union of Pharmacology. LIV. Nomenclature and molecu-lar relationships of inwardly rectifying potassium channels, Pharmacol. Rev., 57, 509–526.PubMedCrossRefGoogle Scholar
  3. 3.
    Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I., and Kurachi, Y. (2010) Inwardly rectifying potassium channels: their structure, function, and physio-logical roles, Physiol. Rev., 90, 291–366.PubMedCrossRefGoogle Scholar
  4. 4.
    Goldstein, S. A. N., Bayliss, D. A., Kim, D., Lesage, F., Plant, L. D., and Rajan, S. (2005) International Union of Pharmacology. LV. Nomenclature and molecular relation-ships of two-P potassium channels, Pharmacol. Rev., 57, 527–540.PubMedCrossRefGoogle Scholar
  5. 5.
    Plant, L. D., Rajan, S., and Goldstein, S. A. N. (2005) K2P channels and their protein partners, Curr. Opin. Neurobiol., 15, 326–333.PubMedCrossRefGoogle Scholar
  6. 6.
    Gutman, G. A., Chandy, K. G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L. A., Robertson, G. A., Rudy, B., Sanguinetti, M. C., Stuhmer, W., and Wang, X. (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels, Pharmacol. Rev., 57, 473–508.PubMedCrossRefGoogle Scholar
  7. 7.
    Wei, A. D., Gutman, G. A., Aldrich, R., Chandy, K. G., Grissmer, S., and Wulff, H. (2005) International Union of Pharmacology. LII. Nomenclature and molecular relation-ships of calcium-activated potassium channels, Pharmacol. Rev., 57, 463–472.PubMedCrossRefGoogle Scholar
  8. 8.
    Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., Maylie, J., and Adelman, J. P. (1996) Small-conductance, calcium-activated potassium channels from mammalian brain, Science, 273, 1709–1714.PubMedCrossRefGoogle Scholar
  9. 9.
    Salkoff, L., Butler, A., Ferreira, G., Santi, C., and Wei, A. (2006) High-conductance potassium channels of the SLO family, Nat. Rev. Neurosci., 7, 921–931.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, Y., and Wu, W.-H. (2013) Potassium transport and signaling in higher plants, Annu. Rev. Plant Biol., 64, 451–476.PubMedCrossRefGoogle Scholar
  11. 11.
    Gambale, F., and Uozumi, N. (2006) Properties of Shaker-type potassium channels in higher plants, J. Membr. Biol., 210, 1–19.PubMedCrossRefGoogle Scholar
  12. 12.
    Hedrich, R. (2012) Ion channels in plants, Physiol. Rev., 92, 1777–1811.PubMedCrossRefGoogle Scholar
  13. 13.
    Kang, M., Moroni, A., Gazzarrini, S., DiFrancesco, D., Thiel, G., Severino, M., and Van Etten, J. L. (2004) Small potassium ion channel proteins encoded by chlorella virus-es, Proc. Natl. Acad. Sci. USA, 101, 5318–5324.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Loukin, S. H., Kuo, M. M.-C., Zhou, X.-L., Haynes, W. J., Kung, C., and Saimi, Y. (2005) Microbial K+ channels, J. Gen. Physiol., 125, 521–527.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., and Goldstein, S. A. (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem, Nature, 376, 690–695.PubMedCrossRefGoogle Scholar
  16. 16.
    Long, S. B., Campbell, E. B., and Mackinnon, R. (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel, Science, 309, 897–903.PubMedCrossRefGoogle Scholar
  17. 17.
    Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., Karmilowicz, M. J., Auperin, D. D., and Chandy, K. G. (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, sta-bly expressed in mammalian cell lines, Mol. Pharmacol., 45, 1227–1234.PubMedGoogle Scholar
  18. 18.
    Hess, P., and Tsien, R. W. (1984) Mechanism of ion per-meation through calcium channels, Nature, 309, 453–456.PubMedCrossRefGoogle Scholar
  19. 19.
    Salkoff, L., Wei, A. D., Baban, B., Butler, A., Fawcett, G., Ferreira, G., and Santi, C. M. (2005) Potassium channels in C. elegans, WormBook, pp. 1–15.Google Scholar
  20. 20.
    Heginbotham, L., Lu, Z., Abramson, T., and MacKinnon, R. (1994) Mutations in the K+ channel signature sequence, Biophys. J., 66, 1061–1067.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Bezanilla, F., and Armstrong, C. M. (1972) Negative con-ductance caused by entry of sodium and cesium ions into the potassium channels of squid axons, J. Gen. Physiol., 60, 588–608.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 280, 69–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Hodgkin, A. L., and Keynes, R. D. (1955) The potassium permeability of a giant nerve fibre, J. Physiol., 128, 61–88.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    MacKinnon, R. (2003) Potassium channels, FEBS Lett., 555, 62–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Aggarwal, S. K., and MacKinnon, R. (1996) Contribution of the S4 segment to gating charge in the Shaker K+ chan-nel, Neuron, 16, 1169–1177.PubMedCrossRefGoogle Scholar
  26. 26.
    Lu, Z., Klem, A. M., and Ramu, Y. (2001) Ion conduction pore is conserved among potassium channels, Nature, 413, 809–813.PubMedCrossRefGoogle Scholar
  27. 27.
    Lu, Z., Klem, A. M., and Ramu, Y. (2002) Coupling between voltage sensors and activation gate in voltage-gated K+ channels, J. Gen. Physiol., 120, 663–676.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Barros, F., Dominguez, P., and De la Pena, P. (2012) Cytoplasmic domains and voltage-dependent potassium channel gating, Front. Pharmacol., 3, 49.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sigworth, F. J. (1994) Voltage gating of ion channels, Q. Rev. Biophys., 27, 1–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Bezanilla, F. (2000) The voltage sensor in voltage-depend-ent ion channels, Physiol. Rev., 80, 555–592.PubMedGoogle Scholar
  31. 31.
    Mannuzzu, L. M., Moronne, M. M., and Isacoff, E. Y. (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating, Science, 271, 213–216.PubMedCrossRefGoogle Scholar
  32. 32.
    Schoppa, N. E., McCormack, K., Tanouye, M. A., and Sigworth, F. J. (1992) The size of gating charge in wild-type and mutant Shaker potassium channels, Science, 255, 1712–1715.PubMedCrossRefGoogle Scholar
  33. 33.
    Zagotta, W. N., Hoshi, T., and Aldrich, R. W. (1994) Shaker potassium channel gating. III. Evaluation of kinetic models for activation, J. Gen. Physiol., 103, 321–362.PubMedCrossRefGoogle Scholar
  34. 34.
    Demo, S. D., and Yellen, G. (1991) The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker, Neuron, 7, 743–753.PubMedCrossRefGoogle Scholar
  35. 35.
    Armstrong, C. M., and Bezanilla, F. (1977) Inactivation of the sodium channel. II. Gating current experiments, J. Gen. Physiol., 70, 567–590.PubMedCrossRefGoogle Scholar
  36. 36.
    Zagotta, W. N., Hoshi, T., and Aldrich, R. W. (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB, Science, 250, 568–571.PubMedCrossRefGoogle Scholar
  37. 37.
    Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1990) Biophysical and molecular mechanisms of Shaker potassi-um channel inactivation, Science, 250, 533–538.PubMedCrossRefGoogle Scholar
  38. 38.
    Oliva, C., Gonzalez, V., and Naranjo, D. (2005) Slow inac-tivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins, Biophys. J., 89, 1009–1019.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1991) Two types of inactivation in Shaker K+ channels: effects of alter-ations in the carboxy-terminal region, Neuron, 7, 547–556.PubMedCrossRefGoogle Scholar
  40. 40.
    Choi, K. L., Aldrich, R. W., and Yellen, G. (1991) Tetraethylammonium blockade distinguishes two inactiva-tion mechanisms in voltage-activated K+ channels, Proc. Natl. Acad. Sci. USA, 88, 5092–5095.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hagiwara, S., Miyazaki, S., and Rosenthal, N. P. (1976) Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish, J. Gen. Physiol., 67, 621–638.PubMedCrossRefGoogle Scholar
  42. 42.
    Robertson, D. W., and Steinberg, M. I. (1990) Potassium channel modulators: scientific applications and therapeutic promise, J. Med. Chem., 33, 1529–1541.PubMedCrossRefGoogle Scholar
  43. 43.
    Moczydlowski, E., Lucchesi, K., and Ravindran, A. (1988) An emerging pharmacology of peptide toxins targeted against potassium channels, J. Membr. Biol., 105, 95–111.PubMedCrossRefGoogle Scholar
  44. 44.
    MacKinnon, R., and Miller, C. (1989) Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor, Science, 245, 1382–1385.PubMedCrossRefGoogle Scholar
  45. 45.
    Swartz, K. J. (2007) Tarantula toxins interacting with volt-age sensors in potassium channels, Toxicon, 49, 213–230.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Swartz, K. J., and MacKinnon, R. (1997) Hanatoxin mod-ifies the gating of a voltage-dependent K+ channel through multiple binding sites, Neuron, 18, 665–673.PubMedCrossRefGoogle Scholar
  47. 47.
    Gomez-Varela, D., Zwick-Wallasch, E., Knotgen, H., Sanchez, A., Hettmann, T., Ossipov, D., Weseloh, R., Contreras-Jurado, C., Rothe, M., Stuhmer, W., and Pardo, L. A. (2007) Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity, Cancer Res., 67, 7343–7349.PubMedCrossRefGoogle Scholar
  48. 48.
    Chhabra, S., Chang, S. C., Nguyen, H. M., Huq, R., Tanner, M. R., Londono, L. M., Estrada, R., Dhawan, V., Chauhan, S., Upadhyay, S. K., Gindin, M., Hotez, P. J., Valenzuela, J. G., Mohanty, B., Swarbrick, J. D., Wulff, H., Iadonato, S. P., Gutman, G. A., Beeton, C., Pennington, M. W., Norton, R. S., and Chandy, K. G. (2014) Kv1.3 channel-blocking immunomodulatory peptides from para-sitic worms: implications for autoimmune diseases, FASEB J., 28, 3952–3964.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Xiang, F., Xie, Z., Feng, J., Yang, W., Cao, Z., Li, W., Chen, Z., and Wu, Y. (2015) Plectasin, first animal toxin-like fungal defensin blocking potassium channels through recognizing channel pore region, Toxins (Basel), 7, 34–42.CrossRefGoogle Scholar
  50. 50.
    Yang, W., Feng, J., Xiang, F., Xie, Z., Zhang, G., Sabatier, J.-M., Cao, Z., Li, W., Chen, Z., and Wu, Y. (2015) Endogenous animal toxin-like human β-defensin 2 inhibits own K(+) channels through interaction with channel extracellular pore region, Cell. Mol. Life Sci., 72, 845–853.PubMedCrossRefGoogle Scholar
  51. 51.
    Wulff, H., Castle, N. A., and Pardo, L. A. (2009) Voltage-gated potassium channels as therapeutic targets, Nat. Rev. Drug Discov., 8, 982–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hermann, A., and Gorman, A. L. (1979) Blockade of volt-age-dependent and Ca2+-dependent K+ current compo-nents by internal Ba2+ in molluscan pacemaker neurons, Experientia, 35, 229–231.PubMedCrossRefGoogle Scholar
  53. 53.
    Wulff, H., and Zhorov, B. S. (2008) K+ channel modulators for the treatment of neurological disorders and autoim-mune diseases, Chem. Rev., 108, 1744–1773.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Shen, K. Z., Lagrutta, A., Davies, N. W., Standen, N. B., Adelman, J. P., and North, R. A. (1994) Tetraethylammo-nium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation, Pflugers Arch., 426, 440–445.PubMedCrossRefGoogle Scholar
  55. 55.
    Zheng, W., and Zhang, Y. P. (1986) Research progress on a new potassium channel-blocking agent-4-aminopyridine, Sheng Li Ke Xue Jin Zhan, 17, 254–258.PubMedGoogle Scholar
  56. 56.
    Illes, P., Norenberg, W., and Gebicke-Haerter, P. J. (1996) Molecular mechanisms of microglial activation. B. Voltage-and purinoceptor-operated channels in microglia, Neurochem. Int., 29, 13–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Brown, D. A., and Selyanko, A. A. (1985) Membrane cur-rents underlying the cholinergic slow excitatory post-synaptic potential in the rat sympathetic ganglion, J. Physiol., 365, 365–387.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    DeCoursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D. (1985) Voltage-dependent ion channels in T-lym-phocytes, J. Neuroimmunol., 10, 71–95.PubMedCrossRefGoogle Scholar
  59. 59.
    French, R. J., and Shoukimas, J. J. (1981) Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various sizes, Biophys. J., 34, 271–291.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Faraldo-Gomez, J. D., Kutluay, E., Jogini, V., Zhao, Y., Heginbotham, L., and Roux, B. (2007) Mechanism of intracellular block of the KcsA K+ channel by tetrabutyl-ammonium: insights from X-ray crystallography, electro-physiology and replica-exchange molecular dynamics sim-ulations, J. Mol. Biol., 365, 649–662.PubMedCrossRefGoogle Scholar
  61. 61.
    Armstrong, C. M., and Loboda, A. (2001) A model for 4-aminopyridine action on K channels: similarities to tetraethylammonium ion action, Biophys. J., 81, 895–904.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Del Camino, D., Kanevsky, M., and Yellen, G. (2005) Status of the intracellular gate in the activated-not-open state of shaker K+ channels, J. Gen. Physiol., 126, 419–428.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Martin-Eauclaire, M. F., Ceard, B., Ribeiro, A. M., Diniz, C. R., Rochat, H., and Bougis, P. E. (1992) Molecular cloning and nucleotide sequence analysis of a cDNA encoding the main beta-neurotoxin from the venom of the South American scorpion Tityus serrulatus, FEBS Lett., 302, 220–222.PubMedCrossRefGoogle Scholar
  64. 64.
    Vlasak, R., and Kreil, G. (1984) Nucleotide sequence of cloned cDNAs coding for preprosecapin, a major product of queen-bee venom glands, Eur. J. Biochem., 145, 279–282.PubMedCrossRefGoogle Scholar
  65. 65.
    Mozhayeva, G. N., Naumov, A. P., Nosyreva, E. D., and Grishin, E. V. (1980) Potential-dependent interaction of toxin from venom of the scorpion Buthus eupeus with sodi-um channels in myelinated fibre: voltage clamp experi-ments, Biochim. Biophys. Acta, 597, 587–602.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhu, L., Peigneur, S., Gao, B., Tytgat, J., and Zhu, S. (2013) Two recombinant α-like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na(+) channels, Biochimie, 95, 1732–1740.PubMedCrossRefGoogle Scholar
  67. 67.
    Rodriguez de la Vega, R. C., Schwartz, E. F., and Possani, L. D. (2010) Mining on scorpion venom biodiversity, Toxicon, 56, 1155–1161.PubMedCrossRefGoogle Scholar
  68. 68.
    Quintero-Hernandez, V., Ortiz, E., Rendon-Anaya, M., Schwartz, E. F., Becerril, B., Corzo, G., and Possani, L. D. (2011) Scorpion and spider venom peptides: gene cloning and peptide expression, Toxicon, 58, 644–663.PubMedCrossRefGoogle Scholar
  69. 69.
    Kozlov, S., Malyavka, A., McCutchen, B., Lu, A., Schepers, E., Herrmann, R., and Grishin, E. (2005) A novel strategy for the identification of toxin-like structures in spider venom, Proteins, 59, 131–140.PubMedCrossRefGoogle Scholar
  70. 70.
    Vassilevski, A. A., Kozlov, S. A., Egorov, T. A., and Grishin, E. V. (2010) Purification and characterization of biological-ly active peptides from spider venoms, Methods Mol. Biol., 615, 87–100.PubMedCrossRefGoogle Scholar
  71. 71.
    Kuzmenkov, A. I., Vassilevski, A. A., Kudryashova, K. S., Nekrasova, O. V., Peigneur, S., Tytgat, J., Feofanov, A. V., Kirpichnikov, M. P., and Grishin, E. V. (2015) Variability of potassium channel blockers in Mesobuthus eupeus scorpion venom with focus on Kv1.1: an integrated transcriptomic and proteomic study, J. Biol. Chem., 290, 12195–12209.PubMedCrossRefGoogle Scholar
  72. 72.
    Shijin, Y., Hong, Y., Yibao, M., Zongyun, C., Han, S., Yingliang, W., Zhijian, C., and Wenxin, L. (2008) Characterization of a new Kv1.3 channel-specific blocker, J123, from the scorpion Buthus martensii Karsch, Peptides, 29, 1514–1520.PubMedCrossRefGoogle Scholar
  73. 73.
    Weinstock, G. M. (2006) Insights into social insects from the genome of the honeybee Apis mellifera, Nature, 443, 931–949.CrossRefGoogle Scholar
  74. 74.
    Sanggaard, K. W., Bechsgaard, J. S., Fang, X., Duan, J., Dyrlund, T. F., Gupta, V., Jiang, X., Cheng, L., Fan, D., Feng, Y., Han, L., Huang, Z., Wu, Z., Liao, L., Settepani, V., Thogersen, I. B., Vanthournout, B., Wang, T., Zhu, Y., Funch, P., Enghild, J. J., Schauser, L., Andersen, S. U., Villesen, P., Schierup, M. H., Bilde, T., and Wang, J. (2014) Spider genomes provide insight into composition and evo-lution of venom and silk, Nat. Commun., 5, 3765.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Cao, Z., Yu, Y., Wu, Y., Hao, P., Di, Z., He, Y., Chen, Z., Yang, W., Shen, Z., He, X., Sheng, J., Xu, X., Pan, B., Feng, J., Yang, X., Hong, W., Zhao, W., Li, Z., Huang, K., Li, T., Kong, Y., Liu, H., Jiang, D., Zhang, B., Hu, J., Hu, Y., Wang, B., Dai, J., Yuan, B., Feng, Y., Huang, W., Xing, X., Zhao, G., Li, X., Li, Y., and Li, W. (2013) The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods, Nat. Commun., 4, 2602.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Vonk, F. J., Casewell, N. R., Henkel, C. V., Heimberg, A. M., Jansen, H. J., McCleary, R. J. R., Kerkkamp, H. M., Vos, R. A., Guerreiro, I., Calvete, J. J., Wuster, W., Woods, A. E., Logan, J. M., Harrison, R. A., Castoe, T. A., De Koning, A. P. J., Pollock, D. D., Yandell, M., Calderon, D., Renjifo, C., Currier, R. B., Salgado, D., Pla, D., Sanz, L., Hyder, A. S., Ribeiro, J. M. C., Arntzen, J. W., Van den Thillart, G. E., Boetzer, M., Pirovano, W., Dirks, R. P., Spaink, H. P., Duboule, D., McGlinn, E., Kini, R. M., and Richardson, M. K. (2013) The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system, Proc. Natl. Acad. Sci. USA, 110, 20651–20656.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gao, B., Peigneur, S., Tytgat, J., and Zhu, S. (2010) A potent potassium channel blocker from Mesobuthus eupeus scorpion venom, Biochimie, 92, 1847–1853.PubMedCrossRefGoogle Scholar
  78. 78.
    Chandy, K. G., Cahalan, M., Pennington, M., Norton, R. S., Wulff, H., and Gutman, G. A. (2001) Potassium chan-nels in T-lymphocytes: toxins to therapeutic immunosup-pressants, Toxicon, 39, 1269–1276.PubMedCrossRefGoogle Scholar
  79. 79.
    Kharrat, R., Mansuelle, P., Sampieri, F., Crest, M., Oughideni, R., Van Rietschoten, J., Martin-Eauclaire, M. F., Rochat, H., and El Ayeb, M. (1997) Maurotoxin, a four disulfide bridge toxin from Scorpio maurus venom: purifica-tion, structure and action on potassium channels, FEBS Lett., 406, 284–290.PubMedCrossRefGoogle Scholar
  80. 80.
    Helms, L. M., Felix, J. P., Bugianesi, R. M., Garcia, M. L., Stevens, S., Leonard, R. J., Knaus, H. G., Koch, R., Wanner, S. G., Kaczorowski, G. J., and Slaughter, R. S. (1997) Margatoxin binds to a homomultimer of K(V)1.3 channels in Jurkat cells. Comparison with K(V)1.3 expressed in CHO cells, Biochemistry, 36, 3737–3744.PubMedCrossRefGoogle Scholar
  81. 81.
    Nekrasova, O. V., Ignatova, A. A., Nazarova, A. I., Feofanov, A. V., Korolkova, Y. V., Boldyreva, E. F., Tagvei, A. I., Grishin, E. V., Arseniev, A. S., and Kirpichnikov, M. P. (2009) Recombinant Kv channels at the membrane of Escherichia coli bind specifically agitoxin2, J. Neuroimmune Pharmacol., 4, 83–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Beeton, C., Wulff, H., Singh, S., Botsko, S., Crossley, G., Gutman, G. A., Cahalan, M. D., Pennington, M., and Chandy, K. G. (2003) A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T-lymphocytes, J. Biol. Chem., 278, 9928–9937.PubMedCrossRefGoogle Scholar
  83. 83.
    Freudenthaler, G., Axmann, M., Schindler, H., Pragl, B., Knaus, H.-G., and Schutz, G. J. (2002) Ultrasensitive pharmacological characterization of the voltage-gated potassium channel K(V)1.3 studied by single-molecule flu-orescence microscopy, Histochem. Cell Biol., 117, 197–202.PubMedCrossRefGoogle Scholar
  84. 84.
    Warrell, D. A. (2010) Snake bite, Lancet, 375, 77–88.PubMedCrossRefGoogle Scholar
  85. 85.
    Mouhat, S., Andreotti, N., Jouirou, B., and Sabatier, J.-M. (2008) Animal toxins acting on voltage-gated potassi-um channels, Curr. Pharm. Des., 14, 2503–2518.PubMedCrossRefGoogle Scholar
  86. 86.
    Doley, R., and Kini, R. M. (2009) Protein complexes in snake venom, Cell. Mol. Life Sci., 66, 2851–2871.PubMedCrossRefGoogle Scholar
  87. 87.
    Koh, D. C. I., Armugam, A., and Jeyaseelan, K. (2006) Snake venom components and their applications in bio-medicine, Cell. Mol. Life Sci., 63, 3030–3041.PubMedCrossRefGoogle Scholar
  88. 88.
    Harvey, A. L., and Anderson, A. J. (1985) Dendrotoxins: snake toxins that block potassium channels and facilitate neurotransmitter release, Pharmacol. Ther., 31, 33–55.PubMedCrossRefGoogle Scholar
  89. 89.
    Berndt, K. D., Guntert, P., and Wuthrich, K. (1993) Nuclear magnetic resonance solution structure of dendro-toxin K from the venom of Dendroaspis polylepis polylepis, J. Mol. Biol., 234, 735–750.PubMedCrossRefGoogle Scholar
  90. 90.
    Strydom, D. J. (1973) Protease inhibitors as snake venom toxins, Nat. New Biol., 243, 88–89.PubMedCrossRefGoogle Scholar
  91. 91.
    Robertson, B., Owen, D., Stow, J., Butler, C., and Newland, C. (1996) Novel effects of dendrotoxin homo-logues on subtypes of mammalian Kv1 potassium channels expressed in Xenopus oocytes, FEBS Lett., 383, 26–30.PubMedCrossRefGoogle Scholar
  92. 92.
    Daly, M., Fautin, D. G., and Cappola, V. A. (2003) Systematics of the hexacorallia (Cnidaria: Anthozoa), Zool. J. Linn. Soc., 139, 419–437.CrossRefGoogle Scholar
  93. 93.
    Anderluh, G., and Macek, P. (2002) Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria), Toxicon, 40, 111–124.PubMedCrossRefGoogle Scholar
  94. 94.
    Norton, R. S. (1991) Structure and structure–function relationships of sea anemone proteins that interact with the sodium channel, Toxicon, 29, 1051–1084.PubMedCrossRefGoogle Scholar
  95. 95.
    Castaneda, O., Sotolongo, V., Amor, A. M., Stocklin, R., Anderson, A. J., Harvey, A. L., Engstrom, A., Wernstedt, C., and Karlsson, E. (1995) Characterization of a potassi-um channel toxin from the Caribbean Sea anemone Stichodactyla helianthus, Toxicon, 33, 603–613.PubMedCrossRefGoogle Scholar
  96. 96.
    Diochot, S., Baron, A., Rash, L. D., Deval, E., Escoubas, P., Scarzello, S., Salinas, M., and Lazdunski, M. (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons, EMBO J., 23, 1516–1525.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Andreev, Y. A., Kozlov, S. A., Koshelev, S. G., Ivanova, E. A., Monastyrnaya, M. M., Kozlovskaya, E. P., and Grishin, E. V. (2008) Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1), J. Biol. Chem., 283, 23914–23921.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Frazao, B., Vasconcelos, V., and Antunes, A. (2012) Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview, Mar. Drugs, 10, 1812–1851.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Honma, T., and Shiomi, K. (2005) Peptide toxins in sea anemones: structural and functional aspects, Mar. Biotechnol. (N.Y.), 8, 1–10.CrossRefGoogle Scholar
  100. 100.
    Minagawa, S., Ishida, M., Nagashima, Y., and Shiomi, K. (1998) Primary structure of a potassium channel toxin from the sea anemone Actinia equine, FEBS Lett., 427, 149–151.PubMedCrossRefGoogle Scholar
  101. 101.
    Cotton, J., Crest, M., Bouet, F., Alessandri, N., Gola, M., Forest, E., Karlsson, E., Castaneda, O., Harvey, A. L., Vita, C., and Menez, A. (1997) A potassium-channel toxin from the sea anemone Bunodosoma granulifera, an inhibitor for Kv1 channels. Revision of the amino acid sequence, disulfide-bridge assignment, chemical synthe-sis, and biological activity, Eur. J. Biochem., 244, 192–202.PubMedCrossRefGoogle Scholar
  102. 102.
    Gendeh, G. S., Young, L. C., De Medeiros, C. L., Jeyaseelan, K., Harvey, A. L., and Chung, M. C. (1997) A new potassium channel toxin from the sea anemone Heteractis magnifica: isolation, cDNA cloning, and func-tional expression, Biochemistry, 36, 11461–11471.PubMedCrossRefGoogle Scholar
  103. 103.
    Peigneur, S., Billen, B., Derua, R., Waelkens, E., Debaveye, S., Beress, L., and Tytgat, J. (2011) A bifunc-tional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties, Biochem. Pharmacol., 82, 81–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Schweitz, H., Bruhn, T., Guillemare, E., Moinier, D., Lancelin, J. M., Béress, L., and Lazdunski, M. (1995) Kalicludines and kaliseptine. Two different classes of sea anemone toxins for voltage sensitive K+ channels, J. Biol. Chem., 270, 25121–25126.PubMedCrossRefGoogle Scholar
  105. 105.
    Diochot, S., Schweitz, H., Beress, L., and Lazdunski, M. (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4, J. Biol. Chem., 273, 6744–6749.PubMedCrossRefGoogle Scholar
  106. 106.
    Honma, T., Hasegawa, Y., Ishida, M., Nagai, H., Nagashima, Y., and Shiomi, K. (2005) Isolation and molecular cloning of novel peptide toxins from the sea anemone Antheopsis maculate, Toxicon, 45, 33–41.PubMedCrossRefGoogle Scholar
  107. 107.
    Diochot, S., Loret, E., Bruhn, T., Beress, L., and Lazdunski, M. (2003) APETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels, Mol. Pharmacol., 64, 59–69.PubMedCrossRefGoogle Scholar
  108. 108.
    Rauer, H., Pennington, M., Cahalan, M., and Chandy, K. G. (1999) Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin, J. Biol. Chem., 274, 21885–21892.PubMedCrossRefGoogle Scholar
  109. 109.
    Tucker, J. K., and Tenorio, M. J. (2009) Systematic Classification of Recent and Fossil Conoidean Gastropods, Conchbooks, Hackenheim, p. 133.Google Scholar
  110. 110.
    Livett, B. G., Gayler, K. R., and Khalil, Z. (2004) Drugs from the sea: conopeptides as potential therapeutics, Curr. Med. Chem., 11, 1715–1723.PubMedCrossRefGoogle Scholar
  111. 111.
    Lewis, R. J., Dutertre, S., Vetter, I., and Christie, M. J. (2012) Conus venom peptide pharmacology, Pharmacol. Rev., 64, 259–298.PubMedCrossRefGoogle Scholar
  112. 112.
    Teichert, R. W., Jacobsen, R., Terlau, H., Yoshikami, D., and Olivera, B. M. (2007) Discovery and characterization of the short kappaA-conotoxins: a novel subfamily of exci-tatory conotoxins, Toxicon, 49, 318–328.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Santos, A. D., McIntosh, J. M., Hillyard, D. R., Cruz, L. J., and Olivera, B. M. (2004) The A-superfamily of cono-toxins: structural and functional divergence, J. Biol. Chem., 279, 17596–17606.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang, C.-Z., Jiang, H., Ou, Z.-L., Chen, J.-S., and Chi, C.-W. (2003) cDNA cloning of two A-superfamily cono-toxins from Conus striatus, Toxicon, 42, 613–961.PubMedCrossRefGoogle Scholar
  115. 115.
    Shon, K. J., Stocker, M., Terlau, H., Stuhmer, W., Jacobsen, R., Walker, C., Grilley, M., Watkins, M., Hillyard, D. R., Gray, W. R., and Olivera, B. M. (1998) κ-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel, J. Biol. Chem., 273, 33–38.PubMedCrossRefGoogle Scholar
  116. 116.
    Savarin, P., Guenneugues, M., Gilquin, B., Lamthanh, H., Gasparini, S., Zinn-Justin, S., and Menez, A. (1998) Three-dimensional structure of kappa-conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails, Biochemistry, 37, 5407–5416.PubMedCrossRefGoogle Scholar
  117. 117.
    Ferber, M., Sporning, A., Jeserich, G., DeLaCruz, R., Watkins, M., Olivera, B. M., and Terlau, H. (2003) A novel conus peptide ligand for K+ channels, J. Biol. Chem., 278, 2177–2183.PubMedCrossRefGoogle Scholar
  118. 118.
    Al-Sabi, A., Lennartz, D., Ferber, M., Gulyas, J., Rivier, J. E. F., Olivera, B. M., Carlomagno, T., and Terlau, H. (2004) κM-conotoxin RIIIK, structural and functional novelty in a K+ channel antagonist, Biochemistry, 43, 8625–8635.PubMedCrossRefGoogle Scholar
  119. 119.
    Aguilar, M. B., Lopez-Vera, E., Heimer de la Cotera, E. P., Falcon, A., Olivera, B. M., and Maillo, M. (2007) I-cono-toxins in vermivorous species of the West Atlantic: peptide sr11a from Conus spurius, Peptides, 28, 18–23.PubMedCrossRefGoogle Scholar
  120. 120.
    Fan, C.-X., Chen, X.-K., Zhang, C., Wang, L.-X., Duan, K.-L., He, L.-L., Cao, Y., Liu, S.-Y., Zhong, M.-N., Ulens, C., Tytgat, J., Chen, J.-S., Chi, C.-W., and Zhou, Z. (2003) A novel conotoxin from Conus betulinus, kappa-BtX, unique in cysteine pattern and in function as a specific BK channel modulator, J. Biol. Chem., 278, 12624–12633.PubMedCrossRefGoogle Scholar
  121. 121.
    Aguilar, M. B., Perez-Reyes, L. I., Lopez, Z., De la Cotera, E. P. H., Falcon, A., Ayala, C., Galvan, M., Salvador, C., and Escobar, L. I. (2010) Peptide sr11a from Conus spurius is a novel peptide blocker for Kv1 potassium channels, Peptides, 31, 1287–1291.PubMedCrossRefGoogle Scholar
  122. 122.
    Kauferstein, S., Huys, I., Lamthanh, H., Stocklin, R., Sotto, F., Menez, A., Tytgat, J., and Mebs, D. (2003) A novel conotoxin inhibiting vertebrate voltage-sensitive potassium channels, Toxicon, 42, 43–52.PubMedCrossRefGoogle Scholar
  123. 123.
    Moller, C., Rahmankhah, S., Lauer-Fields, J., Bubis, J., Fields, G. B., and Mari, F. (2005) A novel conotoxin framework with a helix-loop-helix (Cs alpha/alpha) fold, Biochemistry, 44, 15986–15996.PubMedCrossRefGoogle Scholar
  124. 124.
    Imperial, J. S., Bansal, P. S., Alewood, P. F., Daly, N. L., Craik, D. J., Sporning, A., Terlau, H., Lopez-Vera, E., Bandyopadhyay, P. K., and Olivera, B. M. (2006) A novel conotoxin inhibitor of Kv1.6 channel and nAChR subtypes defines a new superfamily of conotoxins, Biochemistry, 45, 8331–8340.PubMedCrossRefGoogle Scholar
  125. 125.
    Bayrhuber, M., Vijayan, V., Ferber, M., Graf, R., Korukottu, J., Imperial, J., Garrett, J. E., Olivera, B. M., Terlau, H., Zweckstetter, M., and Becker, S. (2005) Conkunitzin-S1 is the first member of a new Kunitz-type neurotoxin family. Structural and functional characteriza-tion, J. Biol. Chem., 280, 23766–23770.PubMedCrossRefGoogle Scholar
  126. 126.
    Massilia, G. R., Schinina, M. E., Ascenzi, P., and Polticelli, F. (2001) Contryphan-Vn: a novel peptide from the venom of the Mediterranean snail Conus ventricosus, Biochem. Biophys. Res. Commun., 288, 908–913.PubMedCrossRefGoogle Scholar
  127. 127.
    Dy, C. Y., Buczek, P., Imperial, J. S., Bulaj, G., and Horvath, M. P. (2006) Structure of conkunitzin-S1, a neu-rotoxin and Kunitz-fold disulfide variant from cone snail, Acta Crystallogr. D Biol. Crystallogr., 62, 980–990.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Terlau, H., and Olivera, B. M. (2004) Conus venoms: a rich source of novel ion channel-targeted peptides, Physiol. Rev., 84, 41–68.PubMedCrossRefGoogle Scholar
  129. 129.
    Craig, A. G., Zafaralla, G., Cruz, L. J., Santos, A. D., Hillyard, D. R., Dykert, J., Rivier, J. E., Gray, W. R., Imperial, J., DelaCruz, R. G., Sporning, A., Terlau, H., West, P. J., Yoshikami, D., and Olivera, B. M. (1998) An O-glycosylated neuroexcitatory conus peptide, Biochemistry, 37, 16019–16025.PubMedCrossRefGoogle Scholar
  130. 130.
    Eliseo, T., Cicero, D. O., Romeo, C., Schinina, M. E., Massilia, G. R., Polticelli, F., Ascenzi, P., and Paci, M. (2004) Solution structure of the cyclic peptide con-tryphan-Vn, a Ca2+-dependent K+ channel modulator, Biopolymers, 74, 189–198.PubMedCrossRefGoogle Scholar
  131. 131.
    Palma, M. S. (2013) Hymenoptera insect peptides, in Handbook of Biologically Active Peptides, Academic Press, San Diego, pp. 416-422.Google Scholar
  132. 132.
    Haux, P., Sawerthal, H., and Habermann, E. (1967) Sequence analysis of bee venom neurotoxin (apamine) from its tryptic and chymotryptic cleavage products, Hoppe Seylers Z. Physiol. Chem., 348, 737–738.PubMedGoogle Scholar
  133. 133.
    Ovchinnikov, Y. A., Miroshnikov, A. I., Kudelin, A. B., Kostina, M. B., Boikov, V. A., Magazanik, L. G., and Gotgilf, I. M (1980) Structure and presynaptic action of tertiapin–a neurotoxin from the venom of honey bee Apis mellifera, Bioorg. Khim., 6, 359–365.Google Scholar
  134. 134.
    Bystrov, V. F., Okhanov, V. V., Miroshnikov, A. I., and Ovchinnikov, Y. A. (1980) Solution spatial structure of apamin as derived from NMR study, FEBS Lett., 119, 113–117.PubMedCrossRefGoogle Scholar
  135. 135.
    Xu, X., and Nelson, J. W. (1993) Solution structure of ter-tiapin determined using nuclear magnetic resonance and distance geometry, Proteins, 17, 124–137.PubMedCrossRefGoogle Scholar
  136. 136.
    Pease, J. H., and Wemmer, D. E. (1988) Solution structure of apamin determined by nuclear magnetic resonance and distance geometry, Biochemistry, 27, 8491–8498.PubMedCrossRefGoogle Scholar
  137. 137.
    Lazdunski, M. (1983) Apamin, a neurotoxin specific for one class of Ca2+-dependent K+ channels, Cell Calcium, 4, 421–428.PubMedCrossRefGoogle Scholar
  138. 138.
    Labbe-Jullie, C., Granier, C., Albericio, F., Defendini, M. L., Ceard, B., Rochat, H., and Van Rietschoten, J. (1991) Binding and toxicity of apamin. Characterization of the active site, Eur. J. Biochem., 196, 639–645.PubMedCrossRefGoogle Scholar
  139. 139.
    Kanjhan, R., Coulson, E. J., Adams, D. J., and Bellingham, M. C. (2005) Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner, J. Pharmacol. Exp. Ther., 314, 1353–1361.PubMedCrossRefGoogle Scholar
  140. 140.
    Jin, W., and Lu, Z. (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels, Biochemistry, 37, 13291–13299.PubMedCrossRefGoogle Scholar
  141. 141.
    Jin, W., Klem, A. M., Lewis, J. H., and Lu, Z. (1999) Mechanisms of inward-rectifier K+ channel inhibition by tertiapin-Q, Biochemistry, 38, 14294–14301.PubMedCrossRefGoogle Scholar
  142. 142.
    NMBE–World Spider Catalog (2015}) World Spider Cat. Nat. Hist. Museum Bern (http://www.wsc.nmbe.ch) Accessed January 29, 2015Google Scholar
  143. 143.
    Vasilevskii, A. A., Kozlov, S. A., and Grishin, E. V. (2009) Molecular diversity of spider venoms, Usp. Biol. Khim., 49, 211–274.Google Scholar
  144. 144.
    Kuhn-Nentwig, L., and Nentwig, W. (2013) The cytotox-ic mode of action of the venom of Cupiennius salei (Ctenidae), Spider Ecophysiol., 16, 217–228.CrossRefGoogle Scholar
  145. 145.
    Wang, J. M., Roh, S. H., Kim, S., Lee, C. W., Kim, J. I., and Swartz, K. J. (2004) Molecular surface of tarantula toxins interacting with voltage sensors in K(v) channels, J. Gen. Physiol., 123, 455–467.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Lee, S.-Y., and MacKinnon, R. (2004) A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom, Nature, 430, 232–235.PubMedCrossRefGoogle Scholar
  147. 147.
    Swartz, K. J., and MacKinnon, R. (1995) An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula, Neuron, 15, 941–949.PubMedCrossRefGoogle Scholar
  148. 148.
    Takahashi, H., Kim, J. I., Min, H. J., Sato, K., Swartz, K. J., and Shimada, I. (2000) Solution structure of hanatox-in1, a gating modifier of voltage-dependent K(+) chan-nels: common surface features of gating modifier toxins, J. Mol. Biol., 297, 771–780.PubMedCrossRefGoogle Scholar
  149. 149.
    Diochot, S., Drici, M. D., Moinier, D., Fink, M., and Lazdunski, M. (1999) Effects of phrixotoxins on the Kv4 family of potassium channels and implications for the role of Ito1 in cardiac electrogenesis, Br. J. Pharmacol., 126, 251–263.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Chagot, B., Escoubas, P., Villegas, E., Bernard, C., Ferrat, G., Corzo, G., Lazdunski, M., and Darbon, H. (2004) Solution structure of phrixotoxin 1, a specific peptide inhibitor of Kv4 potassium channels from the venom of the theraphosid spider Phrixotrichus auratus, Protein Sci., 13, 1197–1208.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Wang, X., Connor, M., Smith, R., Maciejewski, M. W., Howden, M. E., Nicholson, G. M., Christie, M. J., and King, G. F. (2000) Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disul-fide bridge, Nat. Struct. Biol., 7, 505–513.PubMedCrossRefGoogle Scholar
  152. 152.
    Liang, S. (2004) An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena Wang], Toxicon, 43, 575–585.PubMedCrossRefGoogle Scholar
  153. 153.
    Sanguinetti, M. C., Johnson, J. H., Hammerland, L. G., Kelbaugh, P. R., Volkmann, R. A., Saccomano, N. A., and Mueller, A. L. (1997) Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels, Mol. Pharmacol., 51, 491–498.PubMedGoogle Scholar
  154. 154.
    Escoubas, P., Diochot, S., Celerier, M.-L., Nakajima, T., and Lazdunski, M. (2002) Novel tarantula toxins for sub-types of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies, Mol. Pharmacol., 62, 48–57.PubMedCrossRefGoogle Scholar
  155. 155.
    Li-Smerin, Y., and Swartz, K. J. (1998) Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels, Proc. Natl. Acad. Sci. USA, 95, 8585–8589.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Yuan, C., Yang, S., Liao, Z., and Liang, S. (2007) Effects and mechanism of Chinese tarantula toxins on the Kv2.1 potassium channels, Biochem. Biophys. Res. Commun., 352, 799–804.PubMedCrossRefGoogle Scholar
  157. 157.
    Bemporad, D., Sands, Z. A., Wee, C. L., Grottesi, A., and Sansom, M. S. P. (2006) Vstx1, a modifier of Kv channel gating, localizes to the interfacial region of lipid bilayers, Biochemistry, 45, 11844–11855.PubMedCrossRefGoogle Scholar
  158. 158.
    Possani, L. D. (1982) The primary structure of noxiustox-in: a K+ channel blocking peptide from the venom of the scorpion Centruroides noxius Hoffmann, Carlsberg Res. Commun., 47, 285–289.CrossRefGoogle Scholar
  159. 159.
    Carbone, E., Wanke, E., Prestipino, G., Possani, L. D., and Maelicke, A. (1982) Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin, Nature, 296, 90–91.PubMedCrossRefGoogle Scholar
  160. 160.
    Miller, C., Moczydlowski, E., Latorre, R., and Phillips, M. (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle, Nature, 313, 316–318.PubMedCrossRefGoogle Scholar
  161. 161.
    Sugg, E. E., Garcia, M. L., Reuben, J. P., Patchett, A. A., and Kaczorowski, G. J. (1990) Synthesis and structural characterization of charybdotoxin, a potent peptidyl inhibitor of the high conductance Ca(2+)-activated K+ channel, J. Biol. Chem., 265, 18745–18745.PubMedGoogle Scholar
  162. 162.
    Miller, C. (1995) The charybdotoxin family of K+ chan-nel-blocking peptides, Neuron, 15, 5–10.PubMedCrossRefGoogle Scholar
  163. 163.
    Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G. J., and Garcia, M. L. (1990) Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus, J. Biol. Chem., 265, 11083–11090.PubMedGoogle Scholar
  164. 164.
    Garcia-Calvo, M., Leonard, R. J., Novick, J., Stevens, S. P., Schmalhofer, W., Kaczorowski, G. J., and Garcia, M. L. (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassi-um channels, J. Biol. Chem., 268, 18866–18874.PubMedGoogle Scholar
  165. 165.
    Crest, M., Jacquet, G., Gola, M., Zerrouk, H., Benslimane, A., Rochat, H., Mansuelle, P., and Martin-Eauclaire, M. F. (1992) Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca(2+)-activated K+ chan-nels characterized from Androctonus mauretanicus maure-tanicus venom, J. Biol. Chem., 267, 1640–1647.PubMedGoogle Scholar
  166. 166.
    Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A., and MacKinnon, R. (1994) Purification and characteriza-tion of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom, Biochemistry, 33, 6834–6839.PubMedCrossRefGoogle Scholar
  167. 167.
    Gao, Y.-D., and Garcia, M. L. (2003) Interaction of agi-toxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels, Proteins, 52, 146–154.PubMedCrossRefGoogle Scholar
  168. 168.
    Srinivasan, K. N., Sivaraja, V., Huys, I., Sasaki, T., Cheng, B., Kumar, T. K. S., Sato, K., Tytgat, J., Yu, C., San, B. C. C., Ranganathan, S., Bowie, H. J., Kini, R. M., and Gopalakrishnakone, P. (2002) κ-Hefutoxin1, a novel toxin from the scorpion Heterometrus fulvipes with unique struc-ture and function. Importance of the functional diad in potassium channel selectivity, J. Biol. Chem., 277, 30040–30047.PubMedCrossRefGoogle Scholar
  169. 169.
    Diego-Garcia, E., Schwartz, E. F., D’Suze, G., Gonzalez, S. A. R., Batista, C. V. F., Garcia, B. I., De la Vega, R. C. R., and Possani, L. D. (2007) Wide phylogenetic distribu-tion of scorpine and long-chain beta-KTx-like peptides in scorpion venoms: identification of “orphan” components, Peptides, 28, 31–37.PubMedCrossRefGoogle Scholar
  170. 170.
    Zeng, X.-C., Zhang, L., Nie, Y., and Luo, X. (2012) Identification and molecular characterization of three new K+-channel specific toxins from the Chinese scorpion Mesobuthus martensii Karsch revealing intronic number polymorphism and alternative splicing in duplicated genes, Peptides, 34, 311–323.PubMedCrossRefGoogle Scholar
  171. 171.
    Diego-Garcia, E., Batista, C. V. F., Garcia-Gomez, B. I., Lucas, S., Candido, D. M., Gomez-Lagunas, F., and Possani, L. D. (2005) The Brazilian scorpion Tityus costa-tus Karsch: genes, peptides and function, Toxicon, 45, 273–283.PubMedCrossRefGoogle Scholar
  172. 172.
    Pisciotta, M., Coronas, F. I., Bloch, C., Prestipino, G., and Possani, L. D. (2000) Fast K(+) currents from cere-bellum granular cells are completely blocked by a peptide purified from Androctonus australis Garzoni scorpion venom, Biochim. Biophys. Acta, 1468, 203–212.PubMedCrossRefGoogle Scholar
  173. 173.
    Bagdany, M., Batista, C. V. F., Valdez-Cruz, N. A., Somodi, S., Rodriguez de la Vega, R. C., Licea, A. F., Varga, Z., Gaspar, R., Possani, L. D., and Panyi, G. (2005) Anuroctoxin, a new scorpion toxin of the alpha-KTx 6 subfamily, is highly selective for Kv1.3 over IKCa1 ion channels of human T-lymphocytes, Mol. Pharmacol., 67, 1034–1044.PubMedCrossRefGoogle Scholar
  174. 174.
    Mouhat, S., Jouirou, B., Mosbah, A., De Waard, M., and Sabatier, J.-M. (2004) Diversity of folds in animal toxins acting on ion channels, Biochem. J., 378, 717–726.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Arzamasov, A. A., Vasilevskii, A. A., and Grishin, E. V. (2014) Chlorotoxin and related peptides are short insect toxins from scorpion venom, Bioorg. Khim., 40, 387–398.PubMedGoogle Scholar
  176. 176.
    Blanc, E., Sabatier, J. M., Kharrat, R., Meunier, S., El Ayeb, M., Van Rietschoten, J., and Darbon, H. (1997) Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated potas-sium channels, Proteins, 29, 321–333.PubMedCrossRefGoogle Scholar
  177. 177.
    Saucedo, A. L., Flores-Solis, D., Rodriguez de la Vega, R. C., Ramirez-Cordero, B., Hernandez-Lopez, R., Cano-Sanchez, P., Noriega Navarro, R., Garcia-Valdes, J., Coronas-Valderrama, F., De Roodt, A., Brieba, L. G., Domingos Possani, L., and Del Rio-Portilla, F. (2012) New tricks of an old pattern: structural versatility of scor-pion toxins with common cysteine spacing, J. Biol. Chem., 287, 12321–12330.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Chen, Z.-Y., Hu, Y.-T., Yang, W.-S., He, Y.-W., Feng, J., Wang, B., Zhao, R.-M., Ding, J.-P., Cao, Z.-J., Li, W.-X., and Wu, Y.-L. (2012) Hg1, novel peptide inhibitor specif-ic for Kv1.3 channels from first scorpion Kunitz-type potassium channel toxin family, J. Biol. Chem., 287, 13813–13821.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Chen, Z., Hu, Y., Han, S., Yin, S., He, Y., Wu, Y., Cao, Z., and Li, W. (2011) ImKTx1, a new Kv1.3 channel block-er with a unique primary structure, J. Biochem. Mol. Toxicol., 25, 244–251.PubMedCrossRefGoogle Scholar
  180. 180.
    Tytgat, J., Chandy, K. G., Garcia, M. L., Gutman, G. A., Martin-Eauclaire, M. F., Van der Walt, J. J., and Possani, L. D. (1999) A unified nomenclature for short-chain pep-tides isolated from scorpion venoms: alpha-KTx molecular subfamilies, Trends Pharmacol. Sci., 20, 444–447.PubMedCrossRefGoogle Scholar
  181. 181.
    Diego-Garcia, E., Caliskan, F., and Tytgat, J. (2014) The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides, BMC Genomics, 15, 295.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    He, Y., Zhao, R., Di, Z., Li, Z., Xu, X., Hong, W., Wu, Y., Zhao, H., Li, W., and Cao, Z. (2013) Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolu-tion of scorpion venom components from Buthidae to non-Buthidae, J. Proteomics, 89, 1–14.PubMedCrossRefGoogle Scholar
  183. 183.
    Diego-Garcia, E., Peigneur, S., Debaveye, S., Gheldof, E., Tytgat, J., and Caliskan, F. (2013) Novel potassium channel blocker venom peptides from Mesobuthus gibbosus (Scorpiones: Buthidae), Toxicon, 61, 72–82.PubMedCrossRefGoogle Scholar
  184. 184.
    Cologna, C. T., Peigneur, S., Rosa, J. C., Selistre-de-Araujo, H. S., Varanda, W. A., Tytgat, J., and Arantes, E. C. (2011) Purification and characterization of Ts15, the first member of a new α-KTX subfamily from the venom of the Brazilian scorpion Tityus serrulatus, Toxicon, 58, 54–61.PubMedCrossRefGoogle Scholar
  185. 185.
    Schwartz, E. F., Diego-Garcia, E., Rodriguez de la Vega, R. C., and Possani, L. D. (2007) Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones), BMC Genomics, 8, 119.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Zhu, S., Gao, B., Aumelas, A., Del Carmen Rodriguez, M., Lanz-Mendoza, H., Peigneur, S., Diego-Garcia, E., Martin-Eauclaire, M.-F., Tytgat, J., and Possani, L. D. (2010) MeuTXKbeta1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolyt-ic activity, Biochim. Biophys. Acta, 1804, 872–883.PubMedCrossRefGoogle Scholar
  187. 187.
    Diego-Garcia, E., Abdel-Mottaleb, Y., Schwartz, E. F., De la Vega, R. C. R., Tytgat, J., and Possani, L. D. (2008) Cytolytic and K+ channel blocking activities of beta-KTx and scorpine-like peptides purified from scorpion venoms, Cell. Mol. Life Sci., 65, 187–200.PubMedCrossRefGoogle Scholar
  188. 188.
    Korolkova, Y. V., Kozlov, S. A., Lipkin, A. V., Pluzhnikov, K. A., Hadley, J. K., Filippov, A. K., Brown, D. A., Angelo, K., Strobaek, D., Jespersen, T., Olesen, S. P., Jensen, B. S., and Grishin, E. V. (2001) An ERG channel inhibitor from the scorpion Buthus eupeus, J. Biol. Chem., 276, 9868–9876.PubMedCrossRefGoogle Scholar
  189. 189.
    Corona, M., Gurrola, G. B., Merino, E., Cassulini, R. R., Valdez-Cruz, N. A., Garcia, B., Ramirez-Dominguez, M. E., Coronas, F. I. V., Zamudio, F. Z., Wanke, E., and Possani, L. D. (2002) A large number of novel Ergtoxin-like genes and ERG K+-channels blocking peptides from scorpions of the genus Centruroides, FEBS Lett., 532, 121–126.PubMedCrossRefGoogle Scholar
  190. 190.
    Gairi, M., Romi, R., Fernandez, I., Rochat, H., Martin-Eauclaire, M. F., Van Rietschoten, J., Pons, M., and Giralt, E. (1997) 3D structure of kaliotoxin: is residue 34 a key for channel selectivity? J. Pept. Sci., 3, 314–319.PubMedCrossRefGoogle Scholar
  191. 191.
    Torres, A. M., Bansal, P., Alewood, P. F., Bursill, J. A., Kuchel, P. W., and Vandenberg, J. I. (2003) Solution struc-ture of CnErg1 (Ergtoxin), a HERG specific scorpion toxin, FEBS Lett., 539, 138–142.PubMedCrossRefGoogle Scholar
  192. 192.
    M’Barek, S., Lopez-Gonzalez, I., Andreotti, N., Di Luccio, E., Visan, V., Grissmer, S., Judge, S., El Ayeb, M., Darbon, H., Rochat, H., Sampieri, F., Beraud, E., Fajloun, Z., De Waard, M., and Sabatier, J.-M. (2003) A maurotoxin with constrained standard disulfide bridging: innovative strategy of chemical synthesis, pharmacology, and docking on K+ channels, J. Biol. Chem., 278, 31095–31104.PubMedCrossRefGoogle Scholar
  193. 193.
    Fajloun, Z., Mosbah, A., Carlier, E., Mansuelle, P., Sandoz, G., Fathallah, M., Di Luccio, E., Devaux, C., Rochat, H., Darbon, H., De Waard, M., and Sabatier, J. M. (2000) Maurotoxin versus Pi1/HsTx1 scorpion toxins. Toward new insights in the understanding of their distinct disulfide bridge patterns, J. Biol. Chem., 275, 39394–39402.PubMedCrossRefGoogle Scholar
  194. 194.
    Coronas, F. V., De Roodt, A. R., Portugal, T. O., Zamudio, F. Z., Batista, C. V. F., Gomez-Lagunas, F., and Possani, L. D. (2003) Disulfide bridges and blockage of Shaker B K(+)-channels by another butantoxin peptide purified from the Argentinean scorpion Tityus trivittatus, Toxicon, 41, 173–179.PubMedCrossRefGoogle Scholar
  195. 195.
    Chagot, B., Pimentel, C., Dai, L., Pil, J., Tytgat, J., Nakajima, T., Corzo, G., Darbon, H., and Ferrat, G. (2005) An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis, Biochem. J., 388, 263–271.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Zhao, R., Dai, H., Qiu, S., Li, T., He, Y., Ma, Y., Chen, Z., Wu, Y., Li, W., and Cao, Z. (2011) SdPI, the first func-tionally characterized Kunitz-type trypsin inhibitor from scorpion venom, PLoS One, 6, e27548.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Gao, B., Harvey, P. J., Craik, D. J., Ronjat, M., De Waard, M., and Zhu, S. (2013) Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold, Biosci. Rep., 33.Google Scholar
  198. 198.
    Zhijian, C., Yun, X., Chao, D., Shunyi, Z., Shijin, Y., Yingliang, W., and Wenxin, L. (2006) Cloning and charac-terization of a novel calcium channel toxin-like gene BmCa1 from Chinese scorpion Mesobuthus martensii Karsch, Peptides, 27, 1235–12340.PubMedCrossRefGoogle Scholar
  199. 199.
    Varga, Z., Gurrola-Briones, G., Papp, F., Rodriguez de la Vega, R. C., Pedraza-Alva, G., Tajhya, R. B., Gaspar, R., Cardenas, L., Rosenstein, Y., Beeton, C., Possani, L. D., and Panyi, G. (2012) Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T-cells, Mol. Pharmacol., 82, 372–382.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Dudina, E. E., Korolkova, Y. V., Bocharova, N. E., Koshelev, S. G., Egorov, T. A., Huys, I., Tytgat, J., and Grishin, E. V. (2001) OsK2, a new selective inhibitor of Kv1.2 potassium channels purified from the venom of the scorpion Orthochirus scrobiculosus, Biochem. Biophys. Res. Commun., 286, 841–847.PubMedCrossRefGoogle Scholar
  201. 201.
    Swartz, K. J. (2004) Towards a structural view of gating in potassium channels, Nat. Rev. Neurosci., 5, 905–916.PubMedCrossRefGoogle Scholar
  202. 202.
    Catterall, W. A., Cestele, S., Yarov-Yarovoy, V., Yu, F. H., Konoki, K., and Scheuer, T. (2007) Voltage-gated ion channels and gating modifier toxins, Toxicon, 49, 124–141.PubMedCrossRefGoogle Scholar
  203. 203.
    Jimenez-Vargas, J. M., Restano-Cassulini, R., and Possani, L. D. (2012) Toxin modulators and blockers of hERG K(+) channels, Toxicon, 60, 492–501.PubMedCrossRefGoogle Scholar
  204. 204.
    Tenenholz, T. C., Klenk, K. C., Matteson, D. R., Blaustein, M. P., and Weber, D. J. (2000) Structural deter-minants of scorpion toxin affinity: the charybdotoxin (alpha-KTX) family of K(+)-channel blocking peptides, Rev. Physiol. Biochem. Pharmacol., 140, 1351–1385.Google Scholar
  205. 205.
    Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. (2002) Crystal structure and mechanism of a calcium-gated potassium channel, Nature, 417, 515–522.PubMedCrossRefGoogle Scholar
  206. 206.
    MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A., and Chait, B. T. (1998) Structural conservation in prokaryotic and eukaryotic potassium channels, Science, 280, 106–109.PubMedCrossRefGoogle Scholar
  207. 207.
    Legros, C., Pollmann, V., Knaus, H. G., Farrell, A. M., Darbon, H., Bougis, P. E., Martin-Eauclaire, M. F., and Pongs, O. (2000) Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels, J. Biol. Chem., 275, 16918–16924.PubMedCrossRefGoogle Scholar
  208. 208.
    Legros, C., Schulze, C., Garcia, M. L., Bougis, P. E., Martin-Eauclaire, M.-F., and Pongs, O. (2002) Engineering-specific pharmacological binding sites for peptidyl inhibitors of potassium channels into KcsA, Biochemistry, 41, 15369–15375.PubMedCrossRefGoogle Scholar
  209. 209.
    Goldstein, S. A., Pheasant, D. J., and Miller, C. (1994) The charybdotoxin receptor of a Shaker K+ channel: pep-tide and channel residues mediating molecular recogni-tion, Neuron, 12, 1377–1388.PubMedCrossRefGoogle Scholar
  210. 210.
    Hidalgo, P., and MacKinnon, R. (1995) Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor, Science, 268, 307–310.PubMedCrossRefGoogle Scholar
  211. 211.
    Ranganathan, R., Lewis, J. H., and MacKinnon, R. (1996) Spatial localization of the K+ channel selectivity fil-ter by mutant cycle-based structure analysis, Neuron, 16, 131–139.PubMedCrossRefGoogle Scholar
  212. 212.
    Lecomte, C., Ferrat, G., Fajloun, Z., Van Rietschoten, J., Rochat, H., Martin-Eauclaire, M. F., Darbon, H., and Sabatier, J. M. (1999) Chemical synthesis and struc-ture–activity relationships of Ts kappa, a novel scorpion toxin acting on apamin-sensitive SK channel, J. Pept. Res., 54, 369–376.PubMedCrossRefGoogle Scholar
  213. 213.
    Shakkottai, V. G., Regaya, I., Wulff, H., Fajloun, Z., Tomita, H., Fathallah, M., Cahalan, M. D., Gargus, J. J., Sabatier, J. M., and Chandy, K. G. (2001) Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2, J. Biol. Chem., 276, 43145–43151.PubMedCrossRefGoogle Scholar
  214. 214.
    Pedarzani, P., D’Hoedt, D., Doorty, K. B., Wadsworth, J. D. F., Joseph, J. S., Jeyaseelan, K., Kini, R. M., Gadre, S. V., Sapatnekar, S. M., Stocker, M., and Strong, P. N. (2002) Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conduc-tance Ca2+-activated K+ channels and afterhyperpolariza-tion currents in central neurons, J. Biol. Chem., 277, 46101–46109.PubMedCrossRefGoogle Scholar
  215. 215.
    Korolkova, Y. V., Bocharov, E. V., Angelo, K., Maslennikov, I. V., Grinenko, O. V., Lipkin, A. V., Nosyreva, E. D., Pluzhnikov, K. A., Olesen, S.-P., Arseniev, A. S., and Grishin, E. V. (2002) New binding site on common molecular scaffold provides HERG channel specificity of scorpion toxin BeKm-1, J. Biol. Chem., 277, 43104–43109.PubMedCrossRefGoogle Scholar
  216. 216.
    Pardo-Lopez, L., Zhang, M., Liu, J., Jiang, M., Possani, L. D., and Tseng, G.-N. (2002) Mapping the binding site of a human ether-a-go-go-related gene-specific peptide toxin (ErgTx) to the channel’s outer vestibule, J. Biol. Chem., 277, 16403–16411.PubMedCrossRefGoogle Scholar
  217. 217.
    Dauplais, M., Lecoq, A., Song, J., Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., De Medeiros, C. L., Rowan, E. G., Harvey, A. L., and Menez, A. (1997) On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-block-ing toxins with unrelated structures, J. Biol. Chem., 272, 4302–4309.PubMedCrossRefGoogle Scholar
  218. 218.
    Gasparini, S., Danse, J. M., Lecoq, A., Pinkasfeld, S., Zinn-Justin, S., Young, L. C., De Medeiros, C. C., Rowan, E. G., Harvey, A. L., and Menez, A. (1998) Delineation of the functional site of alpha-dendrotoxin. The functional topographies of dendrotoxins are different but share a conserved core with those of other Kv1 potassi-um channel-blocking toxins, J. Biol. Chem., 273, 25393–25403.PubMedCrossRefGoogle Scholar
  219. 219.
    Banerjee, A., Lee, A., Campbell, E., and Mackinnon, R. (2013) Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K(+) channel, Elife, 2, e00594.Google Scholar
  220. 220.
    Carlier, E., Avdonin, V., Geib, S., Fajloun, Z., Kharrat, R., Rochat, H., Sabatier, J. M., Hoshi, T., and De Waard, M. (2000) Effect of maurotoxin, a four disulfide-bridged toxin from the chactoid scorpion Scorpio maurus, on Shaker K+ channels, J. Pept. Res., 55, 419–427.PubMedCrossRefGoogle Scholar
  221. 221.
    Mouhat, S., Mosbah, A., Visan, V., Wulff, H., Delepierre, M., Darbon, H., Grissmer, S., De Waard, M., and Sabatier, J.-M. (2004) The “functional” dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels, Biochem. J., 377, 25–36.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    M’Barek, S., Mosbah, A., Sandoz, G., Fajloun, Z., Olamendi-Portugal, T., Rochat, H., Sampieri, F., Guijarro, J. I., Mansuelle, P., Delepierre, M., De Waard, M., and Sabatier, J.-M. (2003) Synthesis and characteriza-tion of Pi4, a scorpion toxin from Pandinus imperator that acts on K+ channels, Eur. J. Biochem., 270, 3583–3592.PubMedCrossRefGoogle Scholar
  223. 223.
    Jouirou, B., Mosbah, A., Visan, V., Grissmer, S., M’Barek, S., Fajloun, Z., Van Rietschoten, J., Devaux, C., Rochat, H., Lippens, G., El Ayeb, M., De Waard, M., Mabrouk, K., and Sabatier, J.-M. (2004) Cobatoxin 1 from Centruroides noxius scorpion venom: chemical synthesis, three-dimensional structure in solution, pharmacology and docking on K+ channels, Biochem. J., 377, 37–49.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Batista, C. V. F., Gomez-Lagunas, F., Rodriguez de la Vega, R. C., Hajdu, P., Panyi, G., Gaspar, R., and Possani, L. D. (2002) Two novel toxins from the Amazonian scorpi-on Tityus cambridgei that block Kv1.3 and Shaker B K(+)-channels with distinctly different affinities, Biochim. Biophys. Acta, 1601, 123–131.PubMedCrossRefGoogle Scholar
  225. 225.
    Katoh, E., Nishio, H., Inui, T., Nishiuchi, Y., Kimura, T., Sakakibara, S., and Yamazaki, T. (2000) Structural basis for the biological activity of dendrotoxin-I, a potent potas-sium channel blocker, Biopolymers, 54, 44–57.PubMedCrossRefGoogle Scholar
  226. 226.
    Lipkind, G. M., and Fozzard, H. A. (1997) A model of scorpion toxin binding to voltage-gated K+ channels, J. Membr. Biol., 158, 187–196.PubMedCrossRefGoogle Scholar
  227. 227.
    Gehlert, D. R., and Gackenheimer, S. L. (1993) Comparison of the distribution of binding sites for the potassium channel ligands [125I]apamin, [125I]charybdo-toxin, and [125I]iodoglyburide in the rat brain, Neuroscience, 52, 191–205.PubMedCrossRefGoogle Scholar
  228. 228.
    Shimony, E., Sun, T., Kolmakova-Partensky, L., and Miller, C. (1994) Engineering a uniquely reactive thiol into a cysteine-rich peptide, Protein Eng., 7, 503–507.PubMedCrossRefGoogle Scholar
  229. 229.
    Pardo, L. A., and Stuhmer, W. (2014) The roles of K(+) channels in cancer, Nat. Rev. Cancer, 14, 39–48.PubMedCrossRefGoogle Scholar
  230. 230.
    Lewis, R. J., and Garcia, M. L. (2003) Therapeutic poten-tial of venom peptides, Nat. Rev. Drug Discov., 2, 790–802.PubMedCrossRefGoogle Scholar
  231. 231.
    Vazquez, J., Feigenbaum, P., Katz, G., King, V. F., Reuben, J. P., Roy-Contancin, L., Slaughter, R. S., Kaczorowski, G. J., and Garcia, M. L. (1989) Characterization of high affinity binding sites for charyb-dotoxin in sarcolemmal membranes from bovine aortic smooth muscle. Evidence for a direct association with the high conductance calcium-activated potassium channel, J. Biol. Chem., 264, 20902–20909.PubMedGoogle Scholar
  232. 232.
    Auguste, P., Hugues, M., Mourre, C., Moinier, D., Tartar, A., and Lazdunski, M. (1992) Scyllatoxin, a blocker of Ca(2+)-activated K+ channels: structure-function rela-tionships and brain localization of the binding sites, Biochemistry, 31, 648–654.PubMedCrossRefGoogle Scholar
  233. 233.
    Knaus, H. G., Schwarzer, C., Koch, R. O., Eberhart, A., Kaczorowski, G. J., Glossmann, H., Wunder, F., Pongs, O., Garcia, M. L., and Sperk, G. (1996) Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals, J. Neurosci., 16, 955–963.PubMedGoogle Scholar
  234. 234.
    Knaus, H. G., Koch, R. O., Eberhart, A., Kaczorowski, G. J., Garcia, M. L., and Slaughter, R. S. (1995) [125I]Margatoxin, an extraordinarily high affinity ligand for voltage-gated potassium channels in mammalian brain, Biochemistry, 34, 13627–13634.PubMedCrossRefGoogle Scholar
  235. 235.
    Garcia-Calvo, M., Knaus, H. G., McManus, O. B., Giangiacomo, K. M., Kaczorowski, G. J., and Garcia, M. L. (1994) Purification and reconstitution of the high-con-ductance, calcium-activated potassium channel from tra-cheal smooth muscle, J. Biol. Chem., 269, 676–682.PubMedGoogle Scholar
  236. 236.
    Knaus, H. G., Garcia-Calvo, M., Kaczorowski, G. J., and Garcia, M. L. (1994) Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels, J. Biol. Chem., 269, 3921–3924.PubMedGoogle Scholar
  237. 237.
    Bergeron, Z. L., and Bingham, J.-P. (2012) Scorpion tox-ins specific for potassium (K+) channels: a historical overview of peptide bioengineering, Toxins (Basel), 4, 1082–1119.CrossRefGoogle Scholar
  238. 238.
    Jimenez-Gonzalez, C., McLaren, G. J., and Dale, N. (2003) Development of Ca2+-channel and BK-channel expression in embryos and larvae of Xenopus laevis, Eur. J. Neurosci., 18, 2175–2187.PubMedCrossRefGoogle Scholar
  239. 239.
    Pragl, B., Koschak, A., Trieb, M., Obermair, G., Kaufmann, W. A., Gerster, U., Blanc, E., Hahn, C., Prinz, H., Schutz, G., Darbon, H., Gruber, H. J., and Knaus, H.-G. (2002) Synthesis, characterization, and application of Cy-dye-and Alexa-dye-labeled hongotox-in(1) analogues. The first high affinity fluorescence probes for voltage-gated K+ channels, Bioconj. Chem., 13, 416–425.CrossRefGoogle Scholar
  240. 240.
    Bingham, J.-P., Bian, S., Tan, Z.-Y., Takacs, Z., and Moczydlowski, E. (2006) Synthesis of a biotin derivative of iberiotoxin: binding interactions with streptavidin and the BK Ca2+-activated K+ channel expressed in a human cell line, Bioconj. Chem., 17, 689–699.CrossRefGoogle Scholar
  241. 241.
    Kudryashova, K. S., Nekrasova, O. V., Kuzmenkov, A. I., Vassilevski, A. A., Ignatova, A. A., Korolkova, Y. V., Grishin, E. V., Kirpichnikov, M. P., and Feofanov, A. V. (2013) Fluorescent system based on bacterial expression of hybrid KcsA channels designed for Kv1.3 ligand screening and study, Anal. Bioanal. Chem., 405, 2379–2389.PubMedCrossRefGoogle Scholar
  242. 242.
    Clare, J. J. (2010) Targeting ion channels for drug discov-ery, Discov. Med., 9, 253–260.PubMedGoogle Scholar
  243. 243.
    Overington, J. P., Al-Lazikani, B., and Hopkins, A. L. (2006) How many drug targets are there? Nat. Rev. Drug Discov., 5, 993–996.PubMedCrossRefGoogle Scholar
  244. 244.
    Alexander, S. P., Benson, H. E., Faccenda, E., Pawson, A. J., Sharman, J. L., McGrath, J. C., Catterall, W. A., Spedding, M., Peters, J. A., Harmar, A. J., and CGTP Collaborators (2013) The Concise Guide to PHARMA-COLOGY 2013/14: overview, Br. J. Pharmacol., 170, 1449–1458.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Beeton, C., Wulff, H., Barbaria, J., Clot-Faybesse, O., Pennington, M., Bernard, D., Cahalan, M. D., Chandy, K. G., and Beraud, E. (2001) Selective blockade of T-lym-phocyte K(+) channels ameliorates experimental autoim-mune encephalomyelitis, a model for multiple sclerosis, Proc. Natl. Acad. Sci. USA, 98, 13942–13947.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Beeton, C., Wulff, H., Standifer, N. E., Azam, P., Mullen, K. M., Pennington, M. W., Kolski-Andreaco, A., Wei, E., Grino, A., Counts, D. R., Wang, P. H., LeeHealey, C. J., Andrews, B., Sankaranarayanan, A., Homerick, D., Roeck, W. W., Tehranzadeh, J., Stanhope, K. L., Zimin, P., Havel, P. J., Griffey, S., Knaus, H.-G., Nepom, G. T., Gutman, G. A., Calabresi, P. A., and Chandy, K. G. (2006) Kv1.3 channels are a therapeutic target for T-cell-mediated autoimmune diseases, Proc. Natl. Acad. Sci. USA, 103, 17414–17419.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Azam, P., Sankaranarayanan, A., Homerick, D., Griffey, S., and Wulff, H. (2007) Targeting effector memory T-cells with the small molecule Kv1.3 blocker PAP-1 suppresses allergic contact dermatitis, J. Invest. Dermatol., 127, 1419–1429.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Feske, S., Wulff, H., and Skolnik, E. Y. (2015) Ion chan-nels in innate and adaptive immunity, Annu. Rev. Immunol., 33, 291–353.PubMedCrossRefGoogle Scholar
  249. 249.
    DeCoursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D. (1984) Voltage-gated K+ channels in human T-lym-phocytes: a role in mitogenesis? Nature, 307, 465–468.PubMedCrossRefGoogle Scholar
  250. 250.
    Chandy, K. G., DeCoursey, T. E., Cahalan, M. D., McLaughlin, C., and Gupta, S. (1984) Voltage-gated potassium channels are required for human T-lymphocyte activation, J. Exp. Med., 160, 369–385.PubMedCrossRefGoogle Scholar
  251. 251.
    Lewis, R. S., and Cahalan, M. D. (1995) Potassium and calcium channels in lymphocytes, Annu. Rev. Immunol., 13, 623–653.PubMedCrossRefGoogle Scholar
  252. 252.
    Feske, S., Skolnik, E. Y., and Prakriya, M. (2012) Ion channels and transporters in lymphocyte function and immunity, Nat. Rev. Immunol., 12, 532–547.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Wulff, H., Calabresi, P. A., Allie, R., Yun, S., Pennington, M., Beeton, C., and Chandy, K. G. (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T-cells as new target for MS, J. Clin. Invest., 111, 1703–1713.PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Breland, A. E., and Currier, R. D. (1983) Scorpion venom and multiple sclerosis, Lancet, 2, 1021.PubMedCrossRefGoogle Scholar
  255. 255.
    Chi, V., Pennington, M. W., Norton, R. S., Tarcha, E. J., Londono, L. M., Sims-Fahey, B., Upadhyay, S. K., Lakey, J. T., Iadonato, S., Wulff, H., Beeton, C., and Chandy, K. G. (2012) Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases, Toxicon, 59, 529–546.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Pennington, M. W., Beeton, C., Galea, C. A., Smith, B. J., Chi, V., Monaghan, K. P., Garcia, A., Rangaraju, S., Giuffrida, A., Plank, D., Crossley, G., Nugent, D., Khaytin, I., Lefievre, Y., Peshenko, I., Dixon, C., Chauhan, S., Orzel, A., Inoue, T., Hu, X., Moore, R. V., Norton, R. S., and Chandy, K. G. (2009) Engineering a stable and selective peptide blocker of the Kv1.3 channel in T-lymphocytes, Mol. Pharmacol., 75, 762–773.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Beeton, C., Pennington, M. W., and Norton, R. S. (2011) Analogs of the sea anemone potassium channel blocker ShK for the treatment of autoimmune diseases, Inflamm. Allergy Drug Targets, 10, 313–321.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Mouhat, S., Visan, V., Ananthakrishnan, S., Wulff, H., Andreotti, N., Grissmer, S., Darbon, H., De Waard, M., and Sabatier, J.-M. (2005) K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom, Biochem. J., 385, 95–104.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Koo, G. C., Blake, J. T., Talento, A., Nguyen, M., Lin, S., Sirotina, A., Shah, K., Mulvany, K., Hora, D., Cunningham, P., Wunderler, D. L., McManus, O. B., Slaughter, R., Bugianesi, R., Felix, J., Garcia, M., Williamson, J., Kaczorowski, G., Sigal, N. H., Springer, M. S., and Feeney, W. (1997) Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo, J. Immunol., 158, 5120–5128.PubMedGoogle Scholar
  260. 260.
    Leonard, R. J., Garcia, M. L., Slaughter, R. S., and Reuben, J. P. (1992) Selective blockers of voltage-gated K+ channels depolarize human T-lymphocytes: mechanism of the antiproliferative effect of charybdotoxin, Proc. Natl. Acad. Sci. USA, 89, 10094–10098.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Bradding, P., and Wulff, H. (2009) The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy, Br. J. Pharmacol., 157, 1330–1339.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Koshy, S., Huq, R., Tanner, M. R., Atik, M. A., Porter, P. C., Khan, F. S., Pennington, M. W., Hanania, N. A., Corry, D. B., and Beeton, C. (2014) Blocking KV1.3 chan-nels inhibits Th2 lymphocyte function and treats a rat model of asthma, J. Biol. Chem., 289, 12623–1262.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Grgic, I., Wulff, H., Eichler, I., Flothmann, C., Kohler, R., and Hoyer, J. (2009) Blockade of T-lymphocyte KCa3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection, Transplant. Proc., 41, 2601–2606.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Schmitt, N., Grunnet, M., and Olesen, S.-P. (2014) Cardiac potassium channel subtypes: new roles in repolar-ization and arrhythmia, Physiol. Rev., 94, 609–653.PubMedCrossRefGoogle Scholar
  265. 265.
    Kass, R. S. (2005) The channelopathies: novel insights into molecular and genetic mechanisms of human disease, J. Clin. Invest., 115, 1986–1989.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Robbins, C. A., and Tempel, B. L. (2012) Kv1.1 and Kv1.2: similar channels, different seizure models, Epilepsia, 53, Suppl. 1, 134–141.Google Scholar
  267. 267.
    Maljevic, S., and Lerche, H. (2014) Potassium channel genes and benign familial neonatal epilepsy, Prog. Brain Res., 213, 17–53.PubMedCrossRefGoogle Scholar
  268. 268.
    Guglielmi, L., Servettini, I., Caramia, M., Catacuzzeno, L., Franciolini, F., D’Adamo, M. C., and Pessia, M. (2015) Update on the implication of potassium channels in autism: K(+) channelautism spectrum disorder, Front. Cell. Neurosci., 9, 34.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Huber, S. M. (2013) Oncochannels, Cell Calcium, 53, 241–255.PubMedCrossRefGoogle Scholar
  270. 270.
    Tsantoulas, C., and McMahon, S. B. (2014) Opening paths to novel analgesics: the role of potassium channels in chronic pain, Trends Neurosci., 37, 146–158.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Ocana, M., Cendan, C. M., Cobos, E. J., Entrena, J. M., and Baeyens, J. M. (2004) Potassium channels and pain: present realities and future opportunities, Eur. J. Pharmacol., 500, 203–219.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. I. Kuzmenkov
    • 1
    Email author
  • E. V. Grishin
    • 1
  • A. A. Vassilevski
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations