Biochemistry (Moscow)

, Volume 80, Issue 13, pp 1723–1733 | Cite as

Regulation of Zygotic Genome and Cellular Pluripotency

  • D. V. OnichtchoukEmail author
  • A. S. Voronina


Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.

Key words

zebrafish ZGA MBT pluripotency Oct4 Nanog 

Abbreviations and definitions


embryonic stem cells


induced pluripotent stem cells

maternal transcription

transcription that occurs in the egg and stops in the first meiotic prophase


midblastula transition (a particular case of MZT, which occurs in several organisms. MBT is a moment of time, when ZGA, degradation of maternal transcripts, desynchronization of cell cycle, and locomotor activity of the cells start. The definition MBT is mostly applied to amphibians, fish, and Drosophila)


maternal to zygotic transition (several events happening after fertilization until establishment of zygotic control over development including ZGA, degradation of maternal transcripts, desynchronization of cell cycle, and acquisition of cell motility. The term MZT can be applied to all metazoans)


capacity of cells to differentiate along cell lineages contributing to all embryonic but not extraembryonic tissues. Early cells of vertebrate embryos before beginning of gastrulation, ESC, derived from mammals, birds, and fish and IPSC are pluripotent


unrestricted capacity of cells to differentiate along cell lineages contributing to all embryonic and extraembryonic tissues. Zygote is totipotent by definition; early mammalian cells are also totipotent


zygotic genome activation (start of zygotic transcription, which occurs in species-specific interval after fertilization).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adachi, K., and Scholer, H. R. (2012) Directing repro-gramming to pluripotency by transcription factors, Curr. Opin. Gen. Dev., 22, 416–422.CrossRefGoogle Scholar
  2. 2.
    Chambers, I., and Tomlinson, S. R. (2009) The transcrip-tional foundation of pluripotency, Development, 136, 2311–2322.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hanna, J. H., Saha, K., and Jaenisch, R. (2010) Pluripotency and cellular reprogramming: facts, hypothe-ses, unresolved issues, Cell, 143, 508–525.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sterneckert, J., Hoing, S., and Scholer, H. R. (2012) Concise review: Oct4 and more: the reprogramming expressway, Stem Cells, 30, 15–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Young, R. A. (2011) Control of the embryonic stem cell state, Cell, 144, 940–954.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bosch, T. C. (2009) Hydra and the evolution of stem cells, BioEssays, 31, 478–486.PubMedCrossRefGoogle Scholar
  7. 7.
    Bosch, T. C., Anton-Erxleben, F., Hemmrich, G., and Khalturin, K. (2010) The hydra polyp: nothing but an active stem cell community, Dev. Growth Differ., 52, 15–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Tanaka, E. M., and Reddien, P. W. (2011) The cellular basis for animal regeneration, Dev. Cell, 21, 172–185.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Conklin, E. G. (1908) The mechanism of heredity, Science, 27, 89–99.PubMedCrossRefGoogle Scholar
  10. 10.
    Boveri, T. (1918) Zwei Fehlerquellen bei Merogoniever-suchen und die Entwicklungsfaehigkeit merogonischer und partiellermerogonischer Seeigelbastarde, Arch. Entw. Mech., 44, 417–471.Google Scholar
  11. 11.
    Godlevski, E. (1906) Untersuchungen ueber die Bastardierung der Echiniden-und Crinoidenfamilie, Arch. Entw. Mech., 20, 579–643.Google Scholar
  12. 12.
    Moore, J. (1941) Developmental rate of hybrid frogs, J. Exp. Zool., 86, 405–422.CrossRefGoogle Scholar
  13. 13.
    Rugh, R., and Exner, F. (1940) Developmental effects resulting from exposure to X-rays.Google Scholar
  14. 11.
    Development of leopard frog eggs activated by bullfrog sperm, Proc. Am. Phil. Soc., 83, 607–619.Google Scholar
  15. 14.
    Neyfakh, A. A. (1959) X-ray inactivation of nuclei as method for studying their function in the early develop-ment of fishes, J. Embryol. Exp. Morphol., 7, 173–192.PubMedGoogle Scholar
  16. 15.
    Neyfakh, A. A. (1964) Radiation investigation of nucleo–cytoplasmic interrelations in morphogenesis and biochemical differentiation, Nature, 201, 880–884.PubMedCrossRefGoogle Scholar
  17. 16.
    Neyfakh, A. A. (1961) Comparative study with the use of radiation of developmental function of nuclei in the devel-opment of animals, Zh. Obshch. Biol., 22, 42–57.Google Scholar
  18. 17.
    Korzh, V. (2009) Before maternal-zygotic transition… there was morphogenetic function of nuclei, Zebrafish, 6, 295–302.PubMedCrossRefGoogle Scholar
  19. 18.
    Korzh, V. P., and Minin, A. A. (2010) A short history of loach or why remember morphogenetic function nuclei? The 50th anniversary of A. A. Neyfakh’s discovery of the morpho-genetic function of the nucleus, Ontogenez, 41, 150–158.PubMedGoogle Scholar
  20. 19.
    Rott, N. N., and Sheveleva, G. A. (1968) Changes in the rate of cell divisions in the course of early development of diploid and haploid loach embryos, J. Embryol. Exp. Morphol., 20, 141–150.PubMedGoogle Scholar
  21. 20.
    Spirin, A. S. (1966) “Masked” forms of mRNA, Curr. Top Dev. Biol., 1, 1–38.PubMedCrossRefGoogle Scholar
  22. 21.
    Spirin, A. S. (1969) Informosomes, Eur. J. Biochem., 10, 20–35.PubMedCrossRefGoogle Scholar
  23. 22.
    Voronina, A. S. (2002) Translational regulation in early devel-opment of eukaryotes, Mol. Biol. (Moscow), 36, 956–969.CrossRefGoogle Scholar
  24. 23.
    Kronja, I., and Orr-Weaver, T. L. (2011) Translational reg-ulation of the cell cycle: when, where, how and why? Phil. Trans. R. Soc., 366, 3638–3652.CrossRefGoogle Scholar
  25. 24.
    Gerhart, J. (1980) Mechanisms regulating pattern forma-tion in the amphibian egg and early embryo, in: Biological Regulation and Development (Goldberg, R., ed.) Plenum Press, New York, pp. 133-315.Google Scholar
  26. 25.
    Tadros, W., and Lipshitz, H. D. (2009) The maternal-to-zygotic transition: a play in two acts, Development, 136, 3033–3042.PubMedCrossRefGoogle Scholar
  27. 26.
    Yasuda, G. K., and Schubiger, G. (1992) Temporal regula-tion in the early embryo: is MBT too good to be true? Trends Genet., 8, 124–127.PubMedCrossRefGoogle Scholar
  28. 27.
    Langley, A. R., Smith, J. C., Stemple, D. L., and Harvey, S. A. (2014) New insights into the maternal to zygotic transi-tion, Development, 141, 3834–3841.PubMedCrossRefGoogle Scholar
  29. 28.
    Signoret, J., and Lefresne, J. (1974) Determination, by tri-tiated thymidine incorporation, of the stages of cellular cycle in the axolotl germ in synchronous period of segmen-tation, C. R. Hebd. Seances Acad. Sci., 279, 1189–1191.Google Scholar
  30. 29.
    Lefresne, J., Andeol, Y., and Signoret, J. (1998) Evidence for introduction of a variable G1 phase at the midblastula transition during early development in axolotl, Dev. Growth Differ., 40, 497–508.PubMedCrossRefGoogle Scholar
  31. 30.
    Newport, J., and Kirschner, M. (1982) A major develop-mental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the mid-blastula stage, Cell, 30, 675–686.PubMedCrossRefGoogle Scholar
  32. 31.
    Newport, J., and Kirschner, M. (1982) A major develop-mental transition in early Xenopus embryos: II. Control of the onset of transcription, Cell, 30, 687–696.PubMedCrossRefGoogle Scholar
  33. 32.
    Kane, D. A., and Kimmel, C. B. (1993) The zebrafish mid-blastula transition, Development, 119, 447–456.PubMedGoogle Scholar
  34. 33.
    Trinkaus, J. P. (1992) The midblastula transition, the YSL transition and the onset of gastrulation in Fundulus, Development, Suppl. S, 116, 75–80.Google Scholar
  35. 34.
    Collart, C., Allen, G. E., Bradshaw, C. R., Smith, J. C., and Zegerman, P. (2013) Titration of four replication fac-tors is essential for the Xenopus laevis midblastula transi-tion, Science, 341, 893–896.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 35.
    Edgar, B. A., and Schubiger, G. (1986) Parameters control-ling transcriptional activation during early Drosophila development, Cell, 44, 871–877.PubMedCrossRefGoogle Scholar
  37. 36.
    Lu, X., Li, J. M., Elemento, O., Tavazoie, S., and Wieschaus, E. F. (2009) Coupling of zygotic transcription to mitotic control at the Drosophila midblastula transition, Development, 136, 2101–2110.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 37.
    Piko, L., and Clegg, K. B. (1982) Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos, Dev. Biol., 89, 362–378.PubMedCrossRefGoogle Scholar
  39. 38.
    Alizadeh, Z., Kageyama, S., and Aoki, F. (2005) Degradation of maternal mRNA in mouse embryos: selec-tive degradation of specific mRNAs after fertilization, Mol. Reprod. Dev., 72, 281–290.PubMedCrossRefGoogle Scholar
  40. 39.
    Hamatani, T., Carter, M. G., Sharov, A. A., and Ko, M. S. (2004) Dynamics of global gene expression changes during mouse preimplantation development, Dev. Cell, 6, 117–131.PubMedCrossRefGoogle Scholar
  41. 40.
    Ferg, M., Sanges, R., Gehrig, J., Kiss, J., Bauer, M., Lovas, A., Szabo, M., Yang, L., Straehle, U., Pankratz, M. J., Olasz, F., Stupka, E., and Muller, F. (2007) The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish, EMBO J., 26, 3945–3956.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 41.
    Aanes, H., Winata, C. L., Lin, C. H., Chen, J. P., Srinivasan, K. G., Lee, S. G., Lim, A. Y., Hajan, H. S., Collas, P., Bourque, G., Gong, Z., Korzh, V., Alestrom, P., and Mathavan, S. (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition, Genome Res., 21, 1328–1338.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 42.
    Baugh, L. R., Hill, A. A., Slonim, D. K., Brown, E. L., and Hunter, C. P. (2003) Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome, Development, 130, 889–900.PubMedCrossRefGoogle Scholar
  44. 43.
    Paillard, L., Omilli, F., Legagneux, V., Bassez, T., Maniey, D., and Osborne, H. B. (1998) EDEN and EDEN-BP, a cis-element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos, EMBO J., 17, 278–287.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 44.
    Audic, Y., Omilli, F., and Osborne, H. B. (1997) Post-fer-tilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blas-tula stage, Mol. Cell. Biol., 17, 209–218.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 45.
    Voeltz, G. K., and Steitz, J. A. (1998) AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development, Mol. Cell. Biol., 18, 7537–7545.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 46.
    Tadros, W., Westwood, J. T., and Lipshitz, H. D. (2007) Titration of four replication factors is essential for the Xenopus laevis midblastula transition, Dev. Cell, 12, 847–849.PubMedCrossRefGoogle Scholar
  48. 47.
    De Renzis, S., Elemento, O., Tavazoie, S., and Wieschaus, E. F. (2007) Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo, PLoS Biol., 5, e117.Google Scholar
  49. 48.
    Liang, H. L., Nien, C. Y., Liu, H. Y., Metzstein, M. M., Kirov, N., and Rushlow, C. (2008) The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila, Nature, 456, 400–403.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 49.
    Giraldez, A. J., Mishima, Y., Rihel, J., Grocock, R. J., Van Dongen, S., Inoue, K., Enright, A. J., and Schier, A. F. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs, Science, 312, 75–79.PubMedCrossRefGoogle Scholar
  51. 50.
    Lee, M. T., Bonneau, A. R., Takacs, C. M., Bazzini, A. A., Divito, K. R., Fleming, E. S., and Giraldez, A. J. (2013) Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition, Nature, 503, 360–364.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 51.
    Onichtchouk, D., Geier, F., Polok, B., Messerschmidt, D. M., Mossner, R., Wendik, B., Song, S., Taylor, V., Timmer, J., and Driever, W. (2010) Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early devel-opment, Mol. Syst. Biol., 6, 354.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 52.
    Farley, E., and Levine, M. (2012) HOT DNAs: a novel class of developmental enhancers, Genes Dev., 26, 873–876.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 53.
    Ten Bosch, J. R., Benavides, J. A., and Cline, T. W. (2006) The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription, Development, 133, 1967–1977.PubMedCrossRefGoogle Scholar
  55. 54.
    Kanodia, J. S., Liang, H. L., Kim, Y., Lim, B., Zhan, M., Lu, H., Rushlow, C. A., and Shvartsman, S. Y. (2012) Pattern formation by graded and uniform signals in the early Drosophila embryo, Biophys. J., 102, 427–433.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 55.
    Nien, C. Y., Liang, H. L., Butcher, S., Sun, Y., Fu, S., Gocha, T., Kirov, N., Manak, J. R., and Rushlow, C. (2011) Temporal coordination of gene networks by Zelda in the early Drosophila embryo, PLoS Genet., 7, e1002339.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 56.
    Satija, R., and Bradley, R. K. (2012) The TAGteam motif facilitates binding of 21 sequence-specific transcription factors in the Drosophila embryo, Genome Res., 22, 656–665.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 57.
    Kvon, E. Z., Stampfel, G., Yanez-Cuna, J. O., Dickson, B. J., and Stark, A. (2012) HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature, Genes Dev., 26, 908–913.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 58.
    Nien, C. Y., Liang, H. L., Butcher, S., Sun, Y., Fu, S., Gocha, T., Kirov, N., Manak, J. R., and Rushlow, C. (2011) Temporal coordination of gene networks by Zelda in the early Drosophila embryo, PLoS Genet., 7, e1002339.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 59.
    Leichsenring, M., Maes, J., Mossner, R., Driever, W., and Onichtchouk, D. (2013) Pou5f1 transcription factor con-trols zygotic gene activation in vertebrates, Science, 341, 1005–1009.PubMedCrossRefGoogle Scholar
  61. 60.
    Onichtchouk, D. (2012) Pou5f1/oct4 in pluripotency con-trol: insights from zebrafish, Genesis, 50, 75–85.PubMedCrossRefGoogle Scholar
  62. 61.
    Bogdanovic, O., Fernandez-Minan, A., Tena, J. J., De la Calle-Mustienes, E., Hidalgo, C., Van Kruysbergen, I., Van Heeringen, S. J., Veenstra, G. J., and Gomez-Skarmeta, J. L. (2012) Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis, Genome Res., 22, 2043–2053.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 62.
    Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S. H. (2008) An extended transcriptional network for pluripoten-cy of embryonic stem cells, Cell, 132, 1049–1061.PubMedCrossRefGoogle Scholar
  64. 63.
    Foo, S. M., Sun, Y., Lim, B., Ziukaite, R., O’Brien, K., Nien, C. Y., Kirov, N., Shvartsman, S. Y., and Rushlow, C. A. (2014) Zelda potentiates morphogen activity by increasing chromatin accessibility, Curr. Biol., 24, 1341–1346.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 64.
    Li, X. Y., Harrison, M. M., Villalta, J. E., Kaplan, T., and Eisen, M. B. (2014) Establishment of regions of genomic activity during the Drosophila maternal to zygotic transi-tion, eLife, 3, e03737.Google Scholar
  66. 65.
    Burton, A., and Torres-Padilla, M. E. (2014) Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis, Nat. Rev. Mol. Cell Biol., 15, 723–734.PubMedCrossRefGoogle Scholar
  67. 66.
    Lawson, K. A., Meneses, J. J., and Pedersen, R. A. (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo, Development, 113, 891–911.PubMedGoogle Scholar
  68. 67.
    Garcia-Martinez, V., and Schoenwolf, G. C. (1992) Positional control of mesoderm movement and fate during avian gastrulation and neurulation, Dev. Dyn., 193, 249–256.PubMedCrossRefGoogle Scholar
  69. 68.
    Ho, R. K., and Kimmel, C. B. (1993) Commitment of cell fate in the early zebrafish embryo, Science, 261, 109–111.PubMedCrossRefGoogle Scholar
  70. 69.
    Domingo, C., and Keller, R. (2000) Cells remain compe-tent to respond to mesoderm-inducing signals present during gastrulation in Xenopus laevis, Dev. Biol., 225, 226–240.PubMedCrossRefGoogle Scholar
  71. 70.
    Okabayashi, K., and Asashima, M. (2003) Tissue genera-tion from amphibian animal caps, Curr. Opin. Genet. Dev., 13, 502–507.PubMedCrossRefGoogle Scholar
  72. 71.
    Evans, M. J., and Kaufman, M. H. (1981) Establishment in culture of pluripotent cells from mouse embryos, Nature, 292, 154–156.PubMedCrossRefGoogle Scholar
  73. 72.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts, Science, 282, 1145–1147.PubMedCrossRefGoogle Scholar
  74. 73.
    Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., Gardner, R. L., and McKay, R. D. (2007) New cell lines from mouse epiblast share defin-ing features with human embryonic stem cells, Nature, 448, 196–199.PubMedCrossRefGoogle Scholar
  75. 74.
    Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S., and Bernstein, B. E. (2007) Genome-wide maps of chro-matin state in pluripotent and lineage-committed cells, Nature, 448, 553–560.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 75.
    Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., and Young, R. A. (2005) Core tran-scriptional regulatory circuitry in human embryonic stem cells, Cell, 122, 947–956.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 76.
    Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B., and Ng, H. H. (2006) The Oct4 and Nanog transcription network regulates pluripoten-cy in mouse embryonic stem cells, Nat. Genet., 38, 431–440.PubMedCrossRefGoogle Scholar
  78. 77.
    Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., Gardner, R. L., and McKay, R. D. (2007) New cell lines from mouse epiblast share defin-ing features with human embryonic stem cells, Nature, 448, 196–199.PubMedCrossRefGoogle Scholar
  79. 78.
    Chenoweth, J. G., McKay, R. D., and Tesar, P. J. (2010) Epiblast stem cells contribute new insight into pluripotency and gastrulation, Dev. Growth Differ., 52, 293–301.PubMedCrossRefGoogle Scholar
  80. 79.
    Chenoweth, J. G., and Tesar, P. J. (2010) Isolation and maintenance of mouse epiblast stem cells, Methods Mol. Biol., 636, 25–44.PubMedCrossRefGoogle Scholar
  81. 80.
    Gafni, O., Weinberger, L., Mansour, A. A., Manor, Y. S., Chomsky, E., Ben-Yosef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., Rais, Y., Shipony, Z., Mukamel, Z., Krupalnik, V., Zerbib, M., Geula, S., Caspi, I., Schneir, D., Shwartz, T., Gilad, S., Amann-Zalcenstein, D., Benjamin, S., Amit, I., Tanay, A., Massarwa, R., Novershtern, N., and Hanna, J. H. (2013) Derivation of novel human ground state naive pluripotent stem cells, Nature, 504, 282–286.PubMedCrossRefGoogle Scholar
  82. 81.
    Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., Wong, E., Orlov, Y. L., Zhang, W., Jiang, J., Loh, Y. H., Yeo, H. C., Yeo, Z. X., Narang, V., Govindarajan, K. R., Leong, B., Shahab, A., Ruan, Y., Bourque, G., Sung, W. K., Clarke, N. D., Wei, C. L., and Ng, H. H. (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells, Cell, 133, 1106–1117.PubMedCrossRefGoogle Scholar
  83. 82.
    Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H., and Young, R. A. (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells, Genes Dev., 22, 746–755.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 83.
    Frum, T., Halbisen, M. A., Wang, C., Amiri, H., Robson, P., and Ralston, A. (2013) Oct4 cell-autonomously pro-motes primitive endoderm development in the mouse blas-tocyst, Dev. Cell, 25, 610–622.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 84.
    Le Bin, G. C., Munoz-Descalzo, S., Kurowski, A., Leitch, H., Lou, X., Mansfield, W., Etienne-Dumeau, C., Grabole, N., Mulas, C., Niwa, H., Hadjantonakis, A. K., and Nichols, J. (2014) Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst, Development, 141, 1001–1010.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 85.
    Wu, G., Han, D., Gong, Y., Sebastiano, V., Gentile, L., Singhal, N., Adachi, K., Fischedick, G., Ortmeier, C., Sinn, M., Radstaak, M., Tomilin, A., and Scholer, H. R. (2013) Establishment of totipotency does not depend on Oct4A, Nat. Cell Biol., 15, 1089–1097.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 86.
    Pain, B., Clark, M. E., Shen, M., Nakazawa, H., Sakurai, M., Samarut, J., and Etches, R. J. (1996) Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities, Development, 122, 2339–2348.PubMedGoogle Scholar
  88. 87.
    Hong, N., He, B. P., Schartl, M., and Hong, Y. (2013) Medaka embryonic stem cells are capable of generating entire organs and embryo-like miniatures, Stem Cells Dev., 22, 750–757.PubMedCrossRefGoogle Scholar
  89. 88.
    Hong, Y., Winkler, C., and Schartl, M. (1996) Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes), Mech. Dev., 60, 33–44.PubMedCrossRefGoogle Scholar
  90. 89.
    Hong, Y., Winkler, C., and Schartl, M. (1998) Production of medakafish chimeras from a stable embryonic stem cell line, Proc. Natl. Acad. Sci. USA, 95, 3679–3684.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 90.
    Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663–676.PubMedCrossRefGoogle Scholar
  92. 91.
    Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., Plath, K., and Hochedlinger, K. (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution, Cell Stem Cell, 1, 55–70.PubMedCrossRefGoogle Scholar
  93. 92.
    Pijnappel, W. W., Esch, D., Baltissen, M. P., Wu, G., Mischerikow, N., Bergsma, A. J., Van der Wal, E., Han, D. W., Bruch, H., Moritz, S., Lijnzaad, P., Altelaar, A. F., Sameith, K., Zaehres, H., Heck, A. J., Holstege, F. C., Scholer, H. R., and Timmers, H. T. (2013) A central role for TFIID in the pluripotent transcription circuitry, Nature, 495, 516–519.PubMedCrossRefGoogle Scholar
  94. 93.
    Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., Loh, K. M., Carter, A. C., Di Giorgio, F. P., Koszka, K., Huangfu, D., Akutsu, H., Liu, D. R., Rubin, L. L., and Eggan, K. (2009) A small-molecule inhibitor of tgf-β signaling replaces sox2 in reprogramming by inducing Nanog, Cell Stem Cell, 5, 491–503.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 94.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., and Thomson, J. A. (2007) Induced pluripotent stem cell lines derived from human somatic cells, Science, 318, 1917–1920.PubMedCrossRefGoogle Scholar
  96. 95.
    Montserrat, N., Nivet, E., Sancho-Martinez, I., Hishida, T., Kumar, S., Miquel, L., Cortina, C., Hishida, Y., Xia, Y., Esteban, C. R., and Izpisua Belmonte, J. C. (2013) Reprogramming of human fibroblasts to pluripotency with lineage specifiers, Cell Stem Cell, 13, 341–350.PubMedCrossRefGoogle Scholar
  97. 96.
    Shu, J., Wu, C., Wu, Y., Li, Z., Shao, S., Zhao, W., Tang, X., Yang, H., Shen, L., Zuo, X., Yang, W., Shi, Y., Chi, X., Zhang, H., Gao, G., Shu, Y., Yuan, K., He, W., Tang, C., Zhao, Y., and Deng, H. (2013) Induction of pluripotency in mouse somatic cells with lineage specifiers, Cell, 153, 963–975.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 97.
    Rossello, R. A., Chen, C. C., Dai, R., Howard, J. T., Hochgeschwender, U., and Jarvis, E. D. (2013) Mammalian genes induce partially reprogrammed pluripo-tent stem cells in non-mammalian vertebrate and inverte-brate species, eLife, 2, e00036.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 98.
    Duboule, D., and Morata, G. (1994) Collinearity and functional hierarchy among genes of the homeotic com-plexes, Trends Genet., 10, 358–364.PubMedCrossRefGoogle Scholar
  100. 99.
    Raff, R. A. (1996) The Shape of Life: Genes, Development and the Evolution of Animal Form, Chicago Press.Google Scholar
  101. 100.
    Sander, K. (1976) Specification of the basic body plan in insect embryogenesis, Adv. Insect Physiol., 12, 125–238.CrossRefGoogle Scholar
  102. 101.
    Domazet-Loso, T., and Tautz, D. (2010) A phylogeneti-cally based transcriptome age index mirrors ontogenetic divergence patterns, Nature, 468, 815–818.PubMedCrossRefGoogle Scholar
  103. 102.
    Kalinka, A. T., and Tomancak, P. (2012) The evolution of early animal embryos: conservation or divergence? Trends Ecol. Evol., 27, 385–393.PubMedCrossRefGoogle Scholar
  104. 103.
    Piasecka, B., Lichocki, P., Moretti, S., Bergmann, S., and Robinson-Rechavi, M. (2013) The hourglass and the early conservation models–co-existing patterns of develop-mental constraints in vertebrates, PLoS Genet., 9, e1003476.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 104.
    Kunarso, G., Chia, N. Y., Jeyakani, J., Hwang, C., Lu, X., Chan, Y. S., Ng, H. H., and Bourque, G. (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells, Nat. Genet., 42, 631–634.PubMedCrossRefGoogle Scholar
  106. 105.
    Xie, D., Chen, C. C., Ptaszek, L. M., Xiao, S., Cao, X., Fang, F., Ng, H. H., Lewin, H. A., Cowan, C., and Zhong, S. (2010) Rewirable gene regulatory networks in the preimplantation embryonic development of three mam-malian species, Genome Res., 20, 804–815.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 106.
    Fernandez-Tresguerres, B., Canon, S., Rayon, T., Pernaute, B., Crespo, M., Torroja, C., and Manzanares, M. (2010) Evolution of the mammalian embryonic pluripotency gene regulatory network, Proc. Natl. Acad. Sci. USA, 107, 19955–19960.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 107.
    Vastenhouw, N. L., Zhang, Y., Woods, I. G., Imam, F., Regev, A., Liu, X. S., Rinn, J., and Schier, A. F. (2010) Chromatin signature of embryonic pluripotency is estab-lished during genome activation, Nature, 464, 922–926.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 108.
    Lindeman, L. C., Andersen, I. S., Reiner, A. H., Li, N., Aanes, H., Ostrup, O., Winata, C., Mathavan, S., Muller, F., Alestrom, P., and Collas, P. (2011) Prepatterning of developmental gene expression by modified histones before zygotic genome activation, Dev. Cell, 21, 993–1004.PubMedCrossRefGoogle Scholar
  110. 109.
    Lunde, K., Belting, H. G., and Driever, W. (2004) Zebrafish pou5f1/pou2, homolog of mammalian Oct4, functions in the endoderm specification cascade, Curr. Biol., 14, 48–55.PubMedCrossRefGoogle Scholar
  111. 110.
    Okuda, Y., Ogura, E., Kondoh, H., and Kamachi, Y. (2010) B1 SOX coordinate cell specification with pattern-ing and morphogenesis in the early zebrafish embryo, PLoS Genet., 6, e1000936.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 111.
    Reim, G., and Brand, M. (2006) Maternal control of ver-tebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4, Development, 133, 2757–2770.PubMedCrossRefGoogle Scholar
  113. 112.
    Reim, G., Mizoguchi, T., Stainier, D. Y., Kikuchi, Y., and Brand, M. (2004) The POU domain protein spg (pou2/Oct4) is essential for endoderm formation in coop-eration with the HMG domain protein casanova, Dev. Cell, 6, 91–101.PubMedCrossRefGoogle Scholar
  114. 113.
    Xu, C., Fan, Z. P., Muller, P., Fogley, R., Dibiase, A., Trompouki, E., Unternaehrer, J., Xiong, F., Torregroza, I., Evans, T., Megason, S. G., Daley, G. Q., Schier, A. F., Young, R. A., and Zon, L. I. (2012) Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway, Dev. Cell, 22, 625–638.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 114.
    Morrison, G. M., and Brickman, J. M. (2006) Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development, Development, 133, 2011–2022.PubMedCrossRefGoogle Scholar
  116. 115.
    Lavial, F., Acloque, H., Bertocchini, F., Macleod, D. J., Boast, S., Bachelard, E., Montillet, G., Thenot, S., Sang, H. M., Stern, C. D., Samarut, J., and Pain, B. (2007) The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells, Development, 134, 3549–3563.PubMedCrossRefGoogle Scholar
  117. 116.
    Dixon, J. E., Allegrucci, C., Redwood, C., Kump, K., Bian, Y., Chatfield, J., Chen, Y. H., Sottile, V., Voss, S. R., Alberio, R., and Johnson, A. D. (2010) Axolotl Nanog activity in mouse embryonic stem cells demon-strates that ground state pluripotency is conserved from urodele amphibians to mammals, Development, 137, 2973–2980.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 117.
    Theunissen, T. W., Costa, Y., Radzisheuskaya, A., Van Oosten, A. L., Lavial, F., Pain, B., Castro, L. F., and Silva, J. C. (2011) Reprogramming capacity of Nanog is func-tionally conserved in vertebrates and resides in a unique homeodomain, Development, 138, 4853–4865.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 118.
    Theunissen, T. W., Van Oosten, A. L., Castelo-Branco, G., Hall, J., Smith, A., and Silva, J. C. (2011) Nanog over-comes reprogramming barriers and induces pluripotency in minimal conditions, Curr. Biol., 21, 65–71.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 119.
    Tapia, N., Reinhardt, P., Duemmler, A., Wu, G., Arauzo-Bravo, M. J., Esch, D., Greber, B., Cojocaru, V., Rascon, C. A., Tazaki, A., Kump, K., Voss, R., Tanaka, E. M., and Scholer, H. R. (2012) Reprogramming to pluripotency is an ancient trait of vertebrate Oct4 and Pou2 proteins, Nat. Commun., 3, 1279.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 120.
    Davidson, E. H., and Erwin, D. H. (2006) Gene regulato-ry networks and the evolution of animal body plans, Science, 311, 796–800.PubMedCrossRefGoogle Scholar
  122. 121.
    Ding, J., Xu, H., Faiola, F., Ma’ayan, A., and Wang, J. (2012) Oct4 links multiple epigenetic pathways to the pluripotency network, Cell Res., 22, 155–167.PubMedCrossRefGoogle Scholar
  123. 122.
    Van den Berg, D. L., Snoek, T., Mullin, N. P., Yates, A., Bezstarosti, K., Demmers, J., Chambers, I., and Poot, R. A. (2010) An Oct4-centered protein interaction network in embryonic stem cells, Cell Stem Cell, 6, 369–381.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 123.
    Yanes, O., Clark, J., Wong, D. M., Patti, G. J., Sanchez-Ruiz, A., Benton, H. P., Trauger, S. A., Desponts, C., Ding, S., and Siuzdak, G. (2010) Metabolic oxidation regulates embryonic stem cell differentiation, Nat. Chem. Biol., 6, 411–417.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Developmental Biology UnitUniversity of FreiburgFreiburgGermany
  2. 2.Research Center of Biotechnology RAS (Bach Institute of Biochemistry)MoscowRussia

Personalised recommendations