Biochemistry (Moscow)

, Volume 80, Issue 13, pp 1716–1722 | Cite as

Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves

  • O. B. BelyaevaEmail author
  • F. F. Litvin


This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochloro-phyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.

Key words

chlorophyll protochlorophyllide photoreduction fluorescence spectra absorption spectra 











protochlorophyllide oxidoreductase


photosystem I(II)


reaction center.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kahn, A., Boardman, N. K., and Thorn, S. W. (1970) Energy transfer between protochlorophyllide molecules: evidence for multiple chromophores in the photoactive protochlorophyllide–protein complex in vivo and in vitro, J. Mol. Biol., 48, 85–101.PubMedCrossRefGoogle Scholar
  2. 2.
    Dujardin, E., and Sironval, C. (1970) The reduction of pro-tochlorophyllide into chlorophyllide. III. The phototrans-formability of the protochlorophyllide lipoprotein complex found in darkness, Photosynthetica, 4, 129–138.Google Scholar
  3. 3.
    Gassman, M. L. (1973) The conversion of photoinactive protochlorophyll(ide)633 to phototransformable pro-tochlorophyll(ide)650 in etiolated bean leaves, treated with δ-aminolevulinic acid, Plant Physiol., 52, 590–594.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Virgin, H. I. (1975) In vivo absorption spectra of pro-tochlorophyll650 and protochlorophyll636 within the region 530-700 nm, Photosynthetica, 9, 84–92.Google Scholar
  5. 5.
    Litvin, F. F., and Stadnichuk, I. N. (1980) Long wave chlorophyll precursors in etiolated leaves and the system of protochlorophyll native forms, Plant Physiol., 27, 1024–1032.Google Scholar
  6. 6.
    Boddi, B., Lindsten, A., Ryberg, M., and Sundqvist, C. (1989) On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts, Physiol. Plant., 76, 135–143.CrossRefGoogle Scholar
  7. 7.
    Boddi, B., Ryberg, M., and Sundqvist, C. (1992) Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra, J. Photochem. Photobiol., 12, 389–401.CrossRefGoogle Scholar
  8. 8.
    Boddi, B., and Franck, F. (1997) Room temperature fluo-rescence spectra of protochlorophyllide and chlorophyllide forms in etiolated bean leaves, J. Photochem. Photobiol. B Biol., 41, 73–82.CrossRefGoogle Scholar
  9. 9.
    Schoefs, B., Bertrand, M., and Franck, F. (2000) Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves, Photochem. Photobiol., 72, 85–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Stadnichuk, I. N., Amirjani, M. R., and Sundqvist, C. (2005) Identification of spectral forms of protochlorophyllide in the region 670-730 nm, Photochem. Photobiol. Sci., 4, 230–238.PubMedCrossRefGoogle Scholar
  11. 11.
    Belyaeva, O. B., and Litvin, F. F. (1989) Photobiosynthesis of Chlorophyll [in Russian], MGU Publishers, Moscow, p. 102.Google Scholar
  12. 12.
    Belyaeva, O. B. (2009) Light-Independent Biosynthesis of Chlorophyll [in Russian], Binom, Moscow, p. 232.Google Scholar
  13. 13.
    Belyaeva, O. B., and Litvin, F. F. (2009) Pathways of pig-ment forms synthesis at terminal photochemical stage of chlorophyll biosynthesis, Adv. Biol. Chem., 49, 319–340.Google Scholar
  14. 14.
    Belyaeva, O. B., and Litvin, F. F. (2014) Mechanisms of phototransformation of protochlorophyllide into chloro-phyllide, Biochemistry (Moscow), 79, 337–348.CrossRefGoogle Scholar
  15. 15.
    Ignatov, N. V., and Litvin, F. F. (1996) Photoconversion of long-wavelength protochlorophyll native form Pchl 682/672 into chlorophyll Chl 715/696 in Chlorella vulgaris B-15, Photosynth. Res., 50, 271–283.PubMedCrossRefGoogle Scholar
  16. 16.
    Schoefs, B., and Franck, F. (2008) The photoenzymatic cycle of NADPH: protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth, Photosynth. Res., 96, 15–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Belyaeva, O. B., and Litvin, F. F. (2007) Photoactive pig-ment–enzyme complexes of chlorophyll precursor in plant leaves, Biochemistry (Moscow), 72, 1458–1477.CrossRefGoogle Scholar
  18. 18.
    Rubin, A. B., Minchenkova, L. E., Krasnovsky, A. A., and Tumerman, L. A. (1962) Study of the duration of pro-tochlorophyllide fluorescence during the etiolated leaves greening, Biofizika, 7, 571–577.Google Scholar
  19. 19.
    Goedheer, J., and Verhulsdonk, C. (1970) Fluorescence and phototransformation of protochlorophyll with etiolat-ed bean leaves from–196 to +20°C, Biochem. Biophys. Res. Commun., 39, 260–266.PubMedCrossRefGoogle Scholar
  20. 20.
    Sironval, C., and Kuyper, P. (1972) The reduction of pro-tochlorophyllide into chlorophyllide. IV. The nature of the intermediate P688-676 species, Photosynthetica, 6, 254–275.Google Scholar
  21. 21.
    Raskin, V. I. (1976) Mechanisms of protochlorophyllide photoreduction in intact etiolated leaves, News Acad. Sci. BSSR, 5, 43–46.Google Scholar
  22. 22.
    Dujardin, E., and Correia, M. (1979) Long-wavelength absorbing pigment protein complexes as fluorescence quenchers in etiolated leaves illuminated in liquid nitrogen, Photobiochem. Photobiophys., 1, 25–32.Google Scholar
  23. 23.
    Correia, M., and Dujardin, E. (1983) Kinetics of the action of intrinsic fluorescence quenchers in etiolated, greening and green leaves illuminated at 77 K, Photobiochem. Photobiophys., 5, 281–292.Google Scholar
  24. 24.
    Dujardin, E. (1984) The long-wavelength-absorbing quenchers formed during illumination of protochlorophyl-lide-proteins, in Protochlorophyllide Reduction and Greening (Sironval, C., and Brouers, M., eds.) Martinus Nijhoff/Dr. W. Junk Publisher, The Hague, pp. 87–98.CrossRefGoogle Scholar
  25. 25.
    Losev, A. P., and Lyalkova, N. D. (1979) Primary stages of photohydration of protochlorophyllide in etiolated leaves, Mol. Biol., 13, 837–844.Google Scholar
  26. 26.
    Litvin, F. F., and Ignatov, N. V. (1980) Reversibility of pro-tochlorophyllide transformation in chlorophyllide in etio-lated plant leaves under light treatment, Dokl. AN SSSR, 250, 1463–1465.Google Scholar
  27. 27.
    Belyaeva, O. B., and Litvin, F. F. (1980) New intermediate reactions in protochlorophyllide photoreduction process, Biofizika, 25, 617–623.Google Scholar
  28. 28.
    Belyaeva, O. B., and Litvin, F. F. (1981) Primary reactions of protochlorophyllide into chlorophyllide phototransfor-mation at 77 K, Photosynthetica, 15, 210–215.Google Scholar
  29. 29.
    Litvin, F. F., Ignatov, N. V., and Belyaeva, O. B. (1981) Photoreversibility of transformation of protochlorophyllide into chlorophyllide, Photobiochem. Photobiophys., 2, 233–237.Google Scholar
  30. 30.
    Belyaeva, O. B., Personova, E. R., and Litvin, F. F. (1983) Photochemical reaction of chlorophyll biosynthesis at 4.2 K, Photosynth. Res., 4, 81–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Frank, F., Dujardin, E., and Sironval, C. (1980) Non-fluo-rescent, short-lived intermediate in photoenzymatic pro-tochlorophyllide reduction at room temperature, Plant Sci. Lett., 18, 375–380.CrossRefGoogle Scholar
  32. 32.
    Franck, F., and Mathis, P. (1980) A short-lived intermedi-ate in the photoenzymatic reduction of protochloro-phyll(ide) into chlorophyll(ide) at a physiological tempera-ture, Photochem. Photobiol., 32, 799–803.CrossRefGoogle Scholar
  33. 33.
    Inoue, Y., Kobayashi, T., Ogawa, T., and Shibata, K. (1981) A short intermediate in the photoconversion of protochloro-phyllide to chlorophyllide a, Plant Cell Physiol., 22, 197–204.Google Scholar
  34. 34.
    Iwai, J., Ikeuchi, M., Inoue, Y., and Kobayashi, T. (1984) Early processes of protochlorophyllide photoreduction as measured by nanosecond and picosecond spectrophotome-try, in Protochlorophyllide Reduction and Greening (Sironval, C., and Brouers, M., eds.) Martinus Nijhoff/Dr. W. Junk Publisher, The Hague, pp. 99–112.CrossRefGoogle Scholar
  35. 35.
    Belyaeva, O. B., Timofeev, K. N., and Litvin, F. F. (1987) Study of the nature of intermediate products of pro-tochlorophyll(ide) photoreduction in vitro and in vivo by optic and EPR-spectroscopy, Biofizika, 32, 104–109.Google Scholar
  36. 36.
    Belyaeva, O. B., Timofeev, K. N., and Litvin, F. F. (1988) The primary reaction in the protochlorophyll(ide) photore-duction as investigated by optical and ESR-spectroscopy, Photosynth. Res., 15, 247–256.PubMedCrossRefGoogle Scholar
  37. 37.
    Ignatov, N. V., Belyaeva, O. B., and Litvin, F. F. (1993) Low temperature phototransformation of protochlorophyll(ide) in etiolated leaves, Photosynth. Res., 38, 117–124.PubMedCrossRefGoogle Scholar
  38. 38.
    Lebedev, N. N., and Timko, M. (1999) Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photore-duction in vitro: insight into the mechanism of chlorophyll formation in light-adapted plant, Proc. Natl. Acad. Sci. USA, 96, 17954–17959.CrossRefGoogle Scholar
  39. 39.
    Belyaeva, O. B., Griffiths, W. T., Kovalev, J. V., Timofeev, K. N., and Litvin, F. F. (2001) Participation of free radicals in photoreduction of protochlorophyllide to chlorophyllide in an artificial pigment–protein complex, Biochemistry (Moscow), 66, 173–177.CrossRefGoogle Scholar
  40. 40.
    Heyes, D. J., Ruban, A. V., Wilks, H. M., and Hunter, C. N. (2002) Enzymology below 200 K: the kinetics and ther-modynamics of the photochemistry catalyzed by pro-tochlorophyllide oxidoreductase, PNAS, 99, 11145–11150.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Heyes, D. J., Ruban, A. V., and Hunter, C. N. (2003) Protochlorophyllide oxidoreductase: “Dark” reaction of a light-driven enzyme, Biochemistry, 42, 523–528.PubMedCrossRefGoogle Scholar
  42. 42.
    Heyes, D. J., Hunter, C. N., Van Stokkum, I. H. M., Grondelle, R., and Groot, M. L. (2003) Ultrafast enzymat-ic reaction dynamics in protochlorophyllide oxidoreduc-tase, Nat. Struct. Biol., 10, 491–492.PubMedCrossRefGoogle Scholar
  43. 43.
    Heyes, D. J., Heathcote, P., Rigby, S. E. J., Palacios, M. A., Grondelle, R., and Hunter, C. N. (2006) The first catalytic step of the light-driven enzyme protochlorophyllide oxi-doreductase proceeds via a charge transfer complex, J. Biol. Chem., 281, 26847–26853.PubMedCrossRefGoogle Scholar
  44. 44.
    Sytina, O. A., Heyes, D. J., Hunter, C. N., Alexandre, M. T., Van Stokkum, I. H. M., Van Grondelle, R., and Groot, M. L. (2008) Conformational changes in an ultrafast light-driven enzyme determine catalytic activity, Nature, 456, 1001–1005.PubMedCrossRefGoogle Scholar
  45. 45.
    Belyaeva, O. B. (1994) Final Stages of Chlorophyll Photosynthesis in Plant Leaves: Author’s abstract of doctor-al dissertation [in Russian], Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino.Google Scholar
  46. 46.
    Raskin, V. I., and Schwartz, A. (2002) The charge-transfer complex between protochlorophyllide and NADPH: an intermediate in protochlorophyllide photoreduction, Photosynth. Res., 74, 181–186.PubMedCrossRefGoogle Scholar
  47. 47.
    Griffiths, W. T., McHugh, T., and Blankenship, R. E. (1996) The light intensity dependence of protochlorophyl-lide photoreduction and its significance to the catalytic mechanism of protochlorophyllide reductase, FEBS Lett., 398, 235–238.PubMedCrossRefGoogle Scholar
  48. 48.
    Belyaeva, O. B., and Sundqvist, C. (1998) Comparative investigation of the appearance of primary chlorophyllide forms in etiolated leaves, prolamellar bodies and prothy-lakoids, Photosynth. Res., 55, 41–48.CrossRefGoogle Scholar
  49. 49.
    Dobek, A., Dujardin, E., Franck, F., Sironval, C., Breton, J., and Roux, E. (1981) The first events of protochloro-phyll(ide) photoreduction investigated in etiolated leaves by means of the fluorescence excited by short, 610 nm laser flashes at room temperature, Photobiochem. Photobiophys., 2, 35–44.Google Scholar
  50. 50.
    Ignatov, N. V., and Litvin, F. F. (2002) A new pathway of chlorophyll biosynthesis from long-wavelength pro-tochlorophyllide Pchld 686/676 in juvenile etiolated plants, Photosynth. Res., 71, 195–207.PubMedCrossRefGoogle Scholar
  51. 51.
    Schoefs, B., and Franck, F. (1993) Photoreduction of pro-tochlorophyllide to chlorophyllide in 2-d-old dark-grown bean (Phaseolus vulgaris cv. Commodore) leaves. Comparison with 10-d-old dark-grown (etiolated) leaves, J. Exp. Bot., 44, 1053–1057.CrossRefGoogle Scholar
  52. 52.
    Franck, F., and Strzalka, K. (1992) Detection of the pho-toactive protochlorophyllide–protein complex in the light during the greening of barley, FEBS Lett., 309, 73–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Belyaeva, O. B., Boddi, B., Ignatov, N. V., Lang, F., and Litvin, F. F. (1984) The role of a long-wavelength pigment forms in the chlorophyll biosynthesis, Photosynth. Res., 5, 263–271.PubMedCrossRefGoogle Scholar
  54. 54.
    Ignatov, N. V., Belyaeva, O. B., and Litvin, F. F. (1983) Sensibilization of photochemical stage of chlorophyll for-mation by long wave forms of protochlorophyll(ide) and chlorophyllide under laser treatment, Proc. Acad. Sci. USSR, 273, 737–740.Google Scholar
  55. 55.
    Litvin, F. F., Krasnovsky, A. A., and Rikhireva, G. T. (1959) Formation and transformation of protochlorophyll in green plant leaves, Proc. Acad. Sci. USSR, 127, 699–701.Google Scholar
  56. 56.
    Garab, G. T., Sundqvist, C., and Faludi-Daniel, A. (1980) Detection of protochlorophyllide forms in green leaves, Photochem. Photobiol., 31, 491–503.CrossRefGoogle Scholar
  57. 57.
    Lebedev, N. N., Siffel, P., and Krasnovsky, A. A. (1985) Spectral characteristics of protochlorophyllide and chloro-phyll fluorescence in green leaves and isolated chloroplasts, Biofizika, 30, 44–49.Google Scholar
  58. 58.
    Ignatov, N. V., and Litvin, F. F. (2002) Biosynthesis of chlorophyll from protochlorophyll(ide) in green plant leaves, Biochemistry (Moscow), 67, 949–955.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations