Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 13, pp 1701–1715 | Cite as

Plant Proteases Involved in Regulated Cell Death

  • A. A. ZamyatninJr.Email author
Review

Abstract

Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death–a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death.

Key words

programmed cell death PCD apoptosis autophagy vacuolar processing enzyme metacaspase phytaspase papain-like protease proteasome 

Abbreviations

ER

endoplasmic reticulum

NCCD

Nomenclature Committee on Cell Death

PCD

programmed cell death

PS-SCL

positional scanning substrate combinatorial library

RCD

regulated cell death

VPE

vacuolar processing enzyme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Galluzzi, L., Bravo-San Pedro, J. M., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Alnemri, E. S., Altucci, L., Andrews, D., Annicchiarico-Petruzzelli, M., Baehrecke, E. H., Bazan, N. G., Bertrand, M. J., Bianchi, K., Blagosklonny, M. V., Blomgren, K., Borner, C., Bredesen, D. E., Brenner, C., Campanella, M., Candi, E., Cecconi, F., Chan, F. K., Chandel, N. S., Cheng, E. H., Chipuk, J. E., Cidlowski, J. A., Ciechanover, A., Dawson, T. M., Dawson, V. L., De Laurenzi, V., De Maria, R., Debatin, K. M., Di Daniele, N., Dixit, V. M., Dynlacht, B. D., El-Deiry, W. S., Fimia, G. M., Flavell, R. A., Fulda, S., Garrido, C., Gougeon, M. L., Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., Ichijo, H., Joseph, B., Jost, P. J., Kaufmann, T., Kepp, O., Klionsky, D. J., Knight, R. A., Kumar, S., Lemasters, J. J., Levine, B., Linkermann, A., Lipton, S. A., Lockshin, R. A., Lopez-Otin, C., Lugli, E., Madeo, F., Malorni, W., Marine, J. C., Martin, S. J., Martinou, J. C., Medema, J. P., Meier, P., Melino, S., Mizushima, N., Moll, U., Munoz-Pinedo, C., Nunez, G., Oberst, A., Panaretakis, T., Penninger, J. M., Peter, M. E., Piacentini, M., Pinton, P., Prehn, J. H., Puthalakath, H., Rabinovich, G. A., Ravichandran, K. S., Rizzuto, R., Rodrigues, C. M., Rubinsztein, D. C., Rudel, T., Shi, Y., Simon, H. U., Stockwell, B. R., Szabadkai, G., Tait, S. W., Tang, H. L., Tavernarakis, N., Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger, A., Wagner, E. F., Walczak, H., White, E., Wood, W. G., Yuan, J., Zakeri, Z., Zhivotovsky, B., Melino, G., and Kroemer, G. (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015, Cell Death Differ., 22, 58–73.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lockshin, R. A. (2008) Early work on apoptosis, an interview with Richard Lockshin, Cell Death Differ., 15, 1091–1095.PubMedCrossRefGoogle Scholar
  3. 3.
    Kroemer, G., El-Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M. V., Malorni, W., Knight, R. A., Piacentini, M., Nagata, S., and Melino, G. (2005) Nomenclature Committee on Cell Death. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ., 12, 1463–1467.PubMedCrossRefGoogle Scholar
  4. 4.
    Galluzzi, L., Vitale, I., Abrams, J. M., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., Dawson, T. M., Dawson, V. L., El-Deiry, W. S., Fulda, S., Gottlieb, E., Green, D. R., Hengartner, M. O., Kepp, O., Knight, R. A., Kumar, S., Lipton, S. A., Lu, X., Madeo, F., Malorni, W., Mehlen, P., Nuñez, G., Peter, M. E., Piacentini, M., Rubinsztein, D. C., Shi, Y., Simon, H. U., Vandenabeele, P., White, E., Yuan, J., Zhivotovsky, B., Melino, G., and Kroemer, G. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ., 19, 107–120.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Crawford, E. D., and Wells, J. A. (2011) Caspase substrates and cellular remodeling, Annu. Rev. Biochem., 80, 1055–1087.PubMedCrossRefGoogle Scholar
  6. 6.
    Van Doorn, W. G., Beers, E. P., Dangl, J. L., Franklin-Tong, V. E., Gallois, P., Hara-Nishimura, I., Jones, A. M., Kawai-Yamada, M., Lam, E., Mundy, J., Mur, L. A., Petersen, M., Smertenko, A., Taliansky, M., Van Breusegem, F., Wolpert, T., Woltering, E., Zhivotovsky, B., and Bozhkov, P. V. (2011) Morphological classification of plant cell deaths, Cell Death Differ., 18, 1241–1246.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sanchez-Vallet, A., Mesters, J. R., and Thomma, B. P. (2015) The battle for chitin recognition in plant−microbe interactions, FEMS Microbiol. Rev., 39, 171–183.PubMedCrossRefGoogle Scholar
  8. 8.
    Solovieva, A. D., Frolova, O. Yu., Solovyev, A. G., Morozov, S. Yu., and Zamyatnin, A. A., Jr. (2013) Effect of mitochondria-targeted antioxidant SkQ1 on programmed cell death induced by viral proteins in tobacco plants, Biochemistry (Moscow), 78, 1006–1012.CrossRefGoogle Scholar
  9. 9.
    Lukhovitskaya, N. I., Yelina, N. E., Zamyatnin, A. A., Jr., Schepetilnikov, M. V., Solovyev, A. G., Sandgren, M., Morozov, S. Y., Valkonen, J. P., and Savenkov, E. I. (2005) Expression, localization and effects on virulence of the cys-teine-rich 8 kDa protein of Potato mop-top virus, J. Gen. Virol., 86, 2879–2889.PubMedCrossRefGoogle Scholar
  10. 10.
    Ye, C. M., Chen, S., Payton, M., Dickman, M. B., and Verchot, J. (2013) TGBp3 triggers the unfolded protein response and SKP1-dependent programmed cell death, Mol. Plant Pathol., 14, 241–255.PubMedCrossRefGoogle Scholar
  11. 11.
    Petrov, V., Hille, J., Mueller-Roeber, B., and Gechev, T. S. (2015) ROS-mediated abiotic stress-induced programmed cell death in plants, Front. Plant Sci, 6, 69.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., and Pinelli, E. (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants, Rev. Environ. Contam. Toxicol., 232, 1–44.PubMedGoogle Scholar
  13. 13.
    Danon, A., Rotari, V. I., Gordon, A., Mailhac, N., and Gallois, P. (2004) Ultraviolet-C overexposure induces pro-grammed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by cas-pase inhibitors, p35 and defender against apoptotic death, J. Biol. Chem., 279, 779–787.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim, Y., Wang, M., Bai, Y., Zeng, Z., Guo, F., Han, N., Bian, H., Wang, J., Pan, J., and Zhu, M. (2014) Bcl-2 sup-presses activation of VPEs by inhibiting cytosolic Ca2+ level with elevated K+ efflux in NaCl-induced PCD in rice, Plant Physiol. Biochem., 80, 168–175.PubMedCrossRefGoogle Scholar
  15. 15.
    Li, Z., Yue, H., and Xing, D. (2012) MAP kinase 6-medi-ated activation of vacuolar processing enzyme modulates heat shock-induced programmed cell death in Arabidopsis, New Phytol., 195, 85–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Bagniewska-Zadworna, A., Arasimowicz-Jelonek, M., Smolinski, D. J., and Stelmasik, A. (2015) New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field condi-tions, Ann. Bot., 113, 1235–1247.CrossRefGoogle Scholar
  17. 17.
    Avci, U., Petzold, H. E., Ismail, I. O., Beers, E. P., and Haigler, C. H. (2008) Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots, Plant J., 56, 303–315.PubMedCrossRefGoogle Scholar
  18. 18.
    Del Pozo, O., and Lam, E. (1998) Caspases and pro-grammed cell death in the hypersensitive response of plants to pathogens, Curr. Biol., 8, 1129–1132.PubMedCrossRefGoogle Scholar
  19. 19.
    Bonneau, L., Ge, Y., Drury, G. E., and Gallois, P. (2008) What happened to plant caspases? J. Exp. Bot., 59, 491–499.PubMedCrossRefGoogle Scholar
  20. 20.
    Sasaki, T. (1998) The rice genome project in Japan, Proc. Natl. Acad. Sci. USA, 95, 2027–2028.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dennis, C., and Surridge, C. (2000) Arabidopsis thaliana genome. Introduction, Nature, 408, 791.PubMedCrossRefGoogle Scholar
  22. 22.
    Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death, Science, 305, 855–858.PubMedCrossRefGoogle Scholar
  23. 23.
    Rojo, E., Martin, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., Jin, H., Paneque, M., Sanchez-Serrano, J. J., Baker, B., Ausubel, F. M., and Raikhel, N. V. (2004) VPEgamma exhibits a caspase-like activity that contributes to defense against pathogens, Curr. Biol., 14, 1897–1906.PubMedCrossRefGoogle Scholar
  24. 24.
    Rawlings, N. D., Waller, M., Barrett, A. J., and Bateman, A. (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res., 42, 503–509.CrossRefGoogle Scholar
  25. 25.
    Hiraiwa, N., Nishimura, M., and Hara-Nishimura, I. (1999) Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides, FEBS Lett., 447, 213–216.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuroyanagi, M., Nishimura, M., and Hara-Nishimura, I. (2002) Activation of Arabidopsis vacuolar processing enzyme by self-catalytic removal of an auto-inhibitory domain of the C-terminal propeptide, Plant Cell Physiol., 43, 143–151.PubMedCrossRefGoogle Scholar
  27. 27.
    Hara-Nishimura, I., and Hatsugai, N. (2011) The role of vacuole in plant cell death, Cell Death Differ., 18, 1298–1304.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hatsugai, N., Yamada, K., Goto-Yamada, S., and Hara-Nishimura, I. (2015) Vacuolar processing enzyme in plant programmed cell death, Front. Plant Sci., 6, 234.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hara-Nishimura, I., Hatsugai, N., Nakaune, S., Kuroyanagi, M., and Nishimura, M. (2005) Vacuolar pro-cessing enzyme: an executor of plant cell death, Curr. Opin. Plant Biol., 8, 404–408.PubMedCrossRefGoogle Scholar
  30. 30.
    Kuroyanagi, M., Yamada, K., Hatsugai, N., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana, J. Biol. Chem., 280, 32914–32920.PubMedCrossRefGoogle Scholar
  31. 31.
    Gauthier, A., Lamotte, O., Reboutier, D., Bouteau, F., Pugin, A., and Wendehenne, D. (2007) Cryptogein-induced anion effluxes: electrophysiological properties and analysis of the mechanisms through which they contribute to the elicitor-triggered cell death, Plant Signal. Behav., 2, 86–95.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kumar, D., Rampuria, S., Singh, N. K., Shukla, P., and Kirti, P. B. (2015) Characterization of a vacuolar process-ing enzyme expressed in Arachis diogoi in resistance responses against late leaf spot pathogen, Phaeoisariopsis personata, Plant Mol. Biol., 88, 177–191.PubMedCrossRefGoogle Scholar
  33. 33.
    Qiang, X., Zechmann, B., Reitz, M. U., Kogel, K. H., and Schafer, P. (2012) The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplas-mic reticulum stress-triggered caspase-dependent cell death, Plant Cell, 24, 794–809.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Deng, M., Bian, H., Xie, Y., Kim, Y., Wang, W., Lin, E., Zeng, Z., Guo, F., Pan, J., Han, N., Wang, J., Qian, Q., and Zhu, M. (2011) Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice, FEBS J., 278, 4797–4810.PubMedCrossRefGoogle Scholar
  35. 35.
    Kadono, T., Tran, D., Errakhi, R., Hiramatsu, T., Meimoun, P., Briand, J., Iwaya-Inoue, M., Kawano, T., and Bouteau, F. (2010) Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death, PLoS One, 5, e13373.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yakimova, E. T., Kapchina-Toteva, V. M., Laarhoven, L. J., Harren, F. M., and Woltering, E. J. (2006) Involvement of ethylene and lipid signaling in cadmium-induced pro-grammed cell death in tomato suspension cells, Plant Physiol. Biochem., 44, 581–589.PubMedCrossRefGoogle Scholar
  37. 37.
    Yakimova, E. T., Kapchina-Toteva, V. M., and Woltering, E. J. (2007) Signal transduction events in aluminum-induced cell death in tomato suspension cells, J. Plant Physiol., 164, 702–708.PubMedCrossRefGoogle Scholar
  38. 38.
    Kariya, K., Demiral, T., Sasaki, T., Tsuchiya, Y., Turkan, I., Sano, T., Hasezawa, S., and Yamamoto, Y. (2013) A novel mechanism of aluminum-induced cell death involving vac-uolar processing enzyme and vacuolar collapse in tobacco cell line BY-2, J. Inorg. Biochem., 128, 196–201.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakaune, S., Yamada, K., Kondo, M., Kato, T., Tabata, S., Nishimura, M., and Hara-Nishimura, I. (2005) A vacuolar processing enzyme, deltaVPE, is involved in seed coat for-mation at the early stage of seed development, Plant Cell, 17, 876–887.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Radchuk, V., Weier, D., Radchuk, R., Weschke, W., and Weber, H. (2011) Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell dis-integration and coordinated with endosperm growth, J. Exp. Bot., 62, 1217–1227.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tran, V., Weier, D., Radchuk, R., Thiel, J., and Radchuk, V. (2014) Caspase-like activities accompany programmed cell death events in developing barley grains, PLoS One, 9, e109426.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kinoshita, T., Yamada, K., Hiraiwa, N., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (1999) Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions, Plant J., 19, 43–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Muller, G. L., Drincovich, M. F., Andreo, C. S., and Lara, M. V. (2010) Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower, J. Exp. Bot., 61, 3675–3688.PubMedCrossRefGoogle Scholar
  44. 44.
    Uren, A. G., O’Rourke, K., Aravind, L. A., Pisabarro, M. T., Seshagiri, S., Koonin, E. V., and Dixit, V. M. (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma, Mol. Cell, 6, 961–967.PubMedGoogle Scholar
  45. 45.
    Vercammen, D., Van de Cotte, B., De Jaeger, G., Eeckhout, D., Casteels, P., Vandepoele, K., Vandenberghe, I., Van Beeumen, J., Inze, D., and Van Breusegem, F. (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine, J. Biol. Chem., 279, 45329–45336.PubMedCrossRefGoogle Scholar
  46. 46.
    Watanabe, N., and Lam, E. (2005) Two Arabidopsis meta-caspases AtMCP1b and AtMCP2b are arginine/lysine-spe-cific cysteine proteases and activate apoptosis-like cell death in yeast, J. Biol. Chem., 280, 14691–14699.PubMedCrossRefGoogle Scholar
  47. 47.
    Bozhkov, P. V., Suarez, M. F., Filonova, L. H., Daniel, G., Zamyatnin, A. A., Jr., Rodriguez-Nieto, S., Zhivotovsky, B., and Smertenko, A. (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogene-sis, Proc. Natl. Acad. Sci. USA, 102, 14463–14468.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tsiatsiani, L., Van Breusegem, F., Gallois, P., Zavialov, A., Lam, E., and Bozhkov, P. V. (2011) Metacaspases, Cell Death Differ., 18, 1279–1288.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Acosta-Maspons, A., Sepulveda-Garcia, E., Sanchez-Baldoquin, L., Marrero-Gutierrez, J., Pons, T., Rocha-Sosa, M., and Gonzalez, L. (2014) Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-bind-ing pocket, Planta, 239, 147–160.PubMedCrossRefGoogle Scholar
  50. 50.
    Fagundes, D., Bohn, B., Cabreira, C., Leipelt, F., Dias, N., Bodanese-Zanettini, M. H., and Cagliari, A. (2015) Caspases in plants: metacaspase gene family in plant stress responses, Funct. Integr. Genom., 15, 639–649.CrossRefGoogle Scholar
  51. 51.
    Choi, C. J., and Berges, J. A. (2013) New types of metacas-pases in phytoplankton reveal diverse origins of cell death proteases, Cell Death Dis., 4, e490.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wen, S., Ma, Q. M., Zhang, Y. L., Yang, J. P., Zhao, G. H., Fu, D. Q., Luo, Y. B., and Qu, G. Q. (2013) Biochemical evidence of key residues for the activation and autoprocess-ing of tomato type II metacaspase, FEBS Lett., 587, 2517–2522.PubMedCrossRefGoogle Scholar
  53. 53.
    Watanabe, N., and Lam, E. (2011) Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d, J. Biol. Chem., 286, 10027–10040.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang, Y., and Lam, E. (2011) Sheathing the swords of death: post-translational modulation of plant metacaspas-es, Plant Signal. Behav., 6, 2051–2056.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Belenghi, B., Romero-Puertas, M. C., Vercammen, D., Brackenier, A., Inze, D., Delledonne, M., and Van Breusegem, F. (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue, J. Biol. Chem., 282, 1352–1358.PubMedCrossRefGoogle Scholar
  56. 56.
    Huang, L., Zhang, H., Hong, Y., Liu, S., Li, D., and Song, F. (2015) Stress-responsive expression, subcellular localiza-tion and protein–protein interactions of the rice metacas-pase family, Int. J. Mol. Sci., 16, 16216–16241.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bollhoner, B., Zhang, B., Stael, S., Denance, N., Overmyer, K., Goffner, D., Van Breusegem, F., and Tuominen, H. (2013) Post mortem function of AtMC9 in xylem vessel elements, New Phytol., 200, 498–510.PubMedCrossRefGoogle Scholar
  58. 58.
    Tsiatsiani, L., Timmerman, E., De Bock, P. J., Vercammen, D., Stael, S., Van de Cotte, B., Staes, A., Goethals, M., Beunens, T., Van Damme, P., Gevaert, K., and Van Breusegem, F. (2013) The Arabidopsis metacaspase 9 degradome, Plant Cell, 25, 2831–2847.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Coll, N. S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J. L., and Epple, P. (2010) Arabidopsis type I metacaspases control cell death, Science, 330, 1393–1397.PubMedCrossRefGoogle Scholar
  60. 60.
    Coll, N. S., Smidler, A., Puigvert, M., Popa, C., Valls, M., and Dangl, J. L. (2014) The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy, Cell Death Differ., 21, 1399–1408.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kim, S. M., Bae, C., Oh, S. K., and Choi, D. (2013) A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants, Mol. Plant Pathol., 14, 557–566.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang, X., Wang, X., Feng, H., Tang, C., Bai, P., Wei, G., Huang, L., and Kang, Z. (2012) TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. tritici, Mol. Plant Microbe Interact., 25, 755–764.PubMedCrossRefGoogle Scholar
  63. 63.
    Hao, L., Goodwin, P. H., and Hsiang, T. (2007) Expression of a metacaspase gene of Nicotiana benthamiana after inoc-ulation with Colletotrichum destructivum or Pseudomonas syringae pv. tomato, and the effect of silencing the gene on the host response, Plant Cell Rep., 26, 1879–1888.PubMedCrossRefGoogle Scholar
  64. 64.
    Watanabe, N., and Lam, E. (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biot-ic and abiotic stresses, Plant J., 66, 969–982.PubMedCrossRefGoogle Scholar
  65. 65.
    He, R., Drury, G. E., Rotari, V. I., Gordon, A., Willer, M., Farzaneh, T., Woltering, E. J., and Gallois, P. (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis, J. Biol. Chem., 283, 774–783.PubMedCrossRefGoogle Scholar
  66. 66.
    Minina, E. A., Filonova, L. H., Fukada, K., Savenkov, E. I., Gogvadze, V., Clapham, D., Sanchez-Vera, V., Suarez, M. F., Zhivotovsky, B., Daniel, G., Smertenko, A., and Bozhkov, P. V. (2013) Autophagy and metacaspase deter-mine the mode of cell death in plants, J. Cell Biol., 203, 917–927.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wrzaczek, M., Vainonen, J. P., Stael, S., Tsiatsiani, L., Help-Rinta-Rahko, H., Gauthier, A., Kaufholdt, D., Bollhoner, B., Lamminmaki, A., Staes, A., Gevaert, K., Tuominen, H., Van Breusegem, F., Helariutta, Y., and Kangasjarvi, J. (2015) GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis, EMBO J., 34, 55–66.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Vercammen, D., Belenghi, B., Van de Cotte, B., Beunens, T., Gavigan, J. A., De Rycke, R., Brackenier, A., Inze, D., Harris, J. L., and Van Breusegem, F. (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9, J. Mol. Biol., 364, 625–636.PubMedCrossRefGoogle Scholar
  69. 69.
    Sundstrom, J. F., Vaculova, A., Smertenko, A. P., Savenkov, E. I., Golovko, A., Minina, E., Tiwari, B. S., Rodriguez-Nieto, S., Zamyatnin, A. A., Jr., Valineva, T., Saarikettu, J., Frilander, M. J., Suarez, M. F., Zavialov, A., Stahl, U., Hussey, P. J., Silvennoinen, O., Sundberg, E., Zhivotovsky, B., and Bozhkov, P. V. (2009) Tudor staphylococcal nucle-ase is an evolutionarily conserved component of the pro-grammed cell death degradome, Nat. Cell Biol., 11, 1347–1354.PubMedCrossRefGoogle Scholar
  70. 70.
    Caudy, A. A., Ketting, R. F., Hammond, S. M., Denli, A. M., Bathoorn, A. M., Tops, B. B., Silva, J. M., Myers, M. M., Hannon, G. J., and Plasterk, R. H. (2003) A micro-coccal nuclease homologue in RNAi effector complexes, Nature, 425, 411–414.PubMedCrossRefGoogle Scholar
  71. 71.
    Scadden, A. D. (2005) The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage, Nat. Struct. Mol. Biol., 12, 489–496.PubMedCrossRefGoogle Scholar
  72. 72.
    Hundley, H. A., and Bass, B. L. (2010) ADAR editing in double-stranded UTRs and other noncoding RNA sequences, Trends Biochem. Sci., 35, 377–383.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zamyatnin, A. A., Jr., Lyamzaev, K. G., and Zinovkin, R. A. (2010) A-to-I RNA editing: a contribution to diversity of the transcriptome and an organism’s development, Biochemistry (Moscow), 75, 1316–1323.CrossRefGoogle Scholar
  74. 74.
    Gutierrez-Beltran, E., Moschou, P. N., Smertenko, A. P., and Bozhkov, P. V. (2015) Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis, Plant Cell, 27, 926–943.PubMedCrossRefGoogle Scholar
  75. 75.
    Strobel, I., and Osiewacz, H. D. (2013) Poly(ADP-ribose) polymerase is a substrate recognized by two metacaspases of Podospora anserine, Eukaryot. Cell, 12, 900–912.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Martinez, M., Cambra, I., Gonzalez-Melendi, P., Santamaria, M. E., and Diaz, I. (2012) C1A cysteine-pro-teases and their inhibitors in plants, Physiol. Plant., 145, 85–94.PubMedCrossRefGoogle Scholar
  77. 77.
    Trobacher, C. P., Senatore, A., and Greenwood, J. S. (2006) Masterminds or minions? Cysteine proteinases in plant programmed cell death, Can. J. Bot., 84, 651–667.CrossRefGoogle Scholar
  78. 78.
    Turk, V., Turk, B., and Turk, D. (2001) Lysosomal cysteine proteases: facts and opportunities, EMBO J., 20, 4629–4633.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Than, M. E., Helm, M., Simpson, D. J., Lottspeich, F., Huber, R., and Gietl, C. (2004) The 2.0 Å crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm, J. Mol. Biol., 336, 1103–1116.PubMedCrossRefGoogle Scholar
  80. 80.
    Richau, K. H., Kaschani, F., Verdoes, M., Pansuriya, T. C., Niessen, S., Stuber, K., Colby, T., Overkleeft, H. S., Bogyo, M., and Van der Hoorn, R. A. (2012) Subclassification and biochemical analysis of plant papain-like cysteine proteas-es displays subfamily-specific characteristics, Plant Physiol., 158, 1583–1599.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hierl, G., Howing, T., Isono, E., Lottspeich, F., and Gietl, C. (2014) Ex vivo processing for maturation of Arabidopsis KDEL-tailed cysteine endopeptidase 2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles, Plant Mol. Biol., 84, 605–620.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Liu, H., Chen, L., Li, Q., Zheng, M., and Liu, J. (2014) Computational study on substrate specificity of a novel cys-teine protease 1 precursor from Zea mays, Int. J. Mol. Sci., 15, 10459–10478.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Savvateeva, L. V., Gorokhovets, N. V., Makarov, V. A., Serebryakova, M. V., Solovyev, A. G., Morozov, S. Y., Reddy, V. P., Zernii, E. Y., Zamyatnin, A. A., Jr., and Aliev, G. (2015) Glutenase and collagenase activities of wheat cysteine protease Triticain-α: feasibility for enzymatic ther-apy assays, Int. J. Biochem. Cell Biol., 62, 115–124.PubMedCrossRefGoogle Scholar
  84. 84.
    Van der Hoorn, R. A. (2008) Plant proteases: from pheno-types to molecular mechanisms, Annu. Rev. Plant Biol., 59, 191–223.PubMedCrossRefGoogle Scholar
  85. 85.
    Schmid, M., Simpson, D., Kalousek, F., and Gietl, C. (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment, Planta, 206, 466–475.PubMedCrossRefGoogle Scholar
  86. 86.
    Schmid, M., Simpson, D. J., Sarioglu, H., Lottspeich, F., and Gietl, C. (2001) The ricinosomes of senescing plant tis-sue bud from the endoplasmic reticulum, Proc. Natl. Acad. Sci. USA, 98, 5353–5358.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gu, C., Shabab, M., Strasser, R., Wolters, P. J., Shindo, T., Niemer, M., Kaschani, F., Mach, L., and Van der Hoorn, R. A. (2012) Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana, PLoS One, 7, e32422.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Madureira, H. C., Da Cunha, M., and Jacinto, T. (2006) Immunolocalization of a defense-related 87 kDa cystatin in leaf blade of tomato plants, Environ. Exp. Bot., 55, 201–208.CrossRefGoogle Scholar
  89. 89.
    Martinez, M., and Diaz, I. (2008) The origin and evolution of plant cystatins and their target cysteine proteinases indi-cate a complex functional relationship, BMC Evol. Biol., 8, 198.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Nissen, M. S., Kumar, G. N., Youn, B., Knowles, D. B., Lam, K. S., Ballinger, W. J., Knowles, N. R., and Kang, C. (2009) Characterization of Solanum tuberosum multicys-tatin and its structural comparison with other cystatins, Plant Cell, 21, 861–875.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Green, A. R., Nissen, M. S., Kumar, G. N., Knowles, N. R., and Kang, C. (2013) Characterization of Solanum tuberosum multicystatin and the significance of core domains, Plant Cell, 25, 5043–5052.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Martinez, M., Diaz-Mendoza, M., Carrillo, L., and Diaz, I. (2007) Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases, FEBS Lett., 581, 2914–2918.PubMedCrossRefGoogle Scholar
  93. 93.
    Margis-Pinheiro, M., Zolet, A. C., Loss, G., Pasquali, G., and Margis, R. (2008) Molecular evolution and diversifica-tion of plant cysteine proteinase inhibitors: new insights after the poplar genome, Mol. Phylogenet. Evol., 49, 349–355.PubMedCrossRefGoogle Scholar
  94. 94.
    Lampl, N., Budai-Hadrian, O., Davydov, O., Joss, T. V., Harrop, S. J., Curmi, P. M., Roberts, T. H., and Fluhr, R. (2010) Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21), J. Biol. Chem., 285, 13550–13560.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Fluhr, R., Lampl, N., and Roberts, T. H. (2012) Serpin protease inhibitors in plant biology, Physiol. Plant., 145, 95–102.PubMedCrossRefGoogle Scholar
  96. 96.
    Ahmed, S. U., Rojo, E., Kovaleva, V., Venkataraman, S., Dombrowski, J. E., Matsuoka, K., and Raikhel, N. V. (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-con-taining vacuolar proteins in Arabidopsis thaliana, J. Cell Biol., 149, 1335–1344.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Helm, M., Schmid, M., Hierl, G., Terneus, K., Tan, L., Lottspeich, F., Kieliszewski, M. J., and Gietl, C. (2008) KDEL-tailed cysteine endopeptidases involved in pro-grammed cell death, intercalation of new cells, and dis-mantling of extensin scaffolds, J. Bot., 95, 1049–1062.CrossRefGoogle Scholar
  98. 98.
    Greenwood, J. S., Helm, M., and Gietl, C. (2005) Ricinosomes and endosperm transfer cell structure in pro-grammed cell death of the nucellus during Ricinus seed development, Proc. Natl. Acad. Sci. USA, 102, 2238–2243.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Howing, T., Huesmann, C., Hoefle, C., Nagel, M. K., Isono, E., Hückelhoven, R., and Gietl, C. (2014) Endoplasmic reticulum KDEL-tailed cysteine endopepti-dase 1 of Arabidopsis (AtCEP1) is involved in pathogen defense, Front. Plant Sci., 5, 58.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hierl, G., Vothknecht, U., and Gietl, C. (2012) Programmed cell death in Ricinus and Arabidopsis: the function of KDEL cysteine peptidases in development, Physiol. Plant., 145, 103–113.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang, D., Liu, D., Lv, X., Wang, Y., Xun, Z., Liu, Z., Li, F., and Lu, H. (2014) The cysteine protease CEP1, a key execu-tor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis, Plant Cell, 26, 2939–2961.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Valpuesta, V., Lange, N. E., Guerrero, C., and Reid, M. S. (1995) Up-regulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemero-callis) flowers, Plant Mol. Biol., 28, 575–582.PubMedCrossRefGoogle Scholar
  103. 103.
    Nadeau, J. A., Zhang, X. S., Li, J., and O’Neill, S. D. (1996) Ovule development: identification of stage-specific and tissue-specific cDNAs, Plant Cell, 8, 213–239.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Rocha, A. J., Soares, E. L., Costa, J. H., Costa, W. L., Soares, A. A., Nogueira, F. C., Domont, G. B., and Campos, F. A. (2013) Differential expression of cysteine peptidase genes in the inner integument and endosperm of developing seeds of Jatropha curcas L. (Euphorbiaceae), Plant Sci., 213, 30–37.PubMedCrossRefGoogle Scholar
  105. 105.
    Trobacher, C. P., Senatore, A., Holley, C., and Greenwood, J. S. (2013) Induction of a ricinosomal-pro-tease and programmed cell death in tomato endosperm by gibberellic acid, Planta, 237, 665–679.PubMedCrossRefGoogle Scholar
  106. 106.
    Senatore, A., Trobacher, C. P., and Greenwood, J. S. (2009) Ricinosomes predict programmed cell death leading to anther dehiscence in tomato, Plant Physiol., 149, 775–790.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yamada, K., Matsushima, R., Nishimura, M., and Hara-Nishimura, I. (2001) A slow maturation of a cysteine pro-tease with a granulin domain in the vacuoles of senescing Arabidopsis leaves, Plant Physiol., 127, 1626–1634.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bateman, A., and Bennett, H. P. (2009) The granulin gene family: from cancer to dementia, BioEssays, 31, 1245–1254.PubMedCrossRefGoogle Scholar
  109. 109.
    Carter, C., Pan, S., Zouhar, J., Avila, E. L., Girke, T., and Raikhel, N. V. (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected pro-teins, Plant Cell, 16, 3285–3303.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Lampl, N., Alkan, N., Davydov, O., and Fluhr, R. (2013) Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis, Plant J., 74, 498–510.PubMedCrossRefGoogle Scholar
  111. 111.
    Zhao, P., Zhou, X. M., Zhang, L. Y., Wang, W., Ma, L. G., Yang, L. B., Peng, X. B., Bozhkov, P. V., and Sun, M. X. (2013) A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos, PLoS Biol., 11, e1001655.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kim, M. J., Yamamoto, D., Matsumoto, K., Inoue, M., Ishida, T., Mizuno, H., Sumiya, S., and Kitamura, K. (1992) Crystal structure of papain–E64-c complex. Binding diversity of E64-c to papain S2 and S3 subsites, Biochem. J., 287, 797–803.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhao, C., Johnson, B. J., Kositsup, B., and Beers, E. P. (2000) Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases, Plant Physiol., 123, 1185–1196.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Funk, V., Kositsup, B., Zhao, C., and Beers, E. P. (2002) The Arabidopsis xylem peptidase XCP1 is a tracheary ele-ment vacuolar protein that may be a papain ortholog, Plant Physiol., 128, 84–94.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Petzold, H. E., Zhao, M., and Beers, E. P. (2012) Expression and functions of proteases in vascular tissues, Physiol. Plant., 145, 121–129.PubMedCrossRefGoogle Scholar
  116. 116.
    McLellan, H., Gilroy, E. M., Yun, B. W., Birch, P. R., and Loake, G. J. (2009) Functional redundancy in the Arabidopsis cathepsin B gene family contributes to basal defense, the hypersensitive response and senescence, New Phytol., 183, 408–418.PubMedCrossRefGoogle Scholar
  117. 117.
    Gilroy, E. M., Hein, I., van der Hoorn, R., Boevink, P. C., Venter, E., McLellan, H., Kaffarnik, F., Hrubikova, K., Shaw, J., Holeva, M., Lopez, E. C., Borras-Hidalgo, O., Pritchard, L., Loake, G. J., Lacomme, C., and Birch, P. R. (2007) Involvement of cathepsin B in the plant disease resistance hypersensitive response, Plant J., 52, 1–13.PubMedCrossRefGoogle Scholar
  118. 118.
    Bernoux, M., Timmers, T., Jauneau, A., Briere, C., De Wit, P. J., Marco, Y., and Deslandes, L. (2008) RD19, an Arabidopsis cysteine protease required for RRS1-R-mediat-ed resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector, Plant Cell, 20, 2252–2264.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Xu, F. X., and Chye, M. L. (1999) Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal, Plant J., 17, 321–327.PubMedCrossRefGoogle Scholar
  120. 120.
    Lohman, K. N., Gan, S., John, M. C., and Amasino, R. M. (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana, Physiol. Plant., 92, 322–328.CrossRefGoogle Scholar
  121. 121.
    Otegui, M. S., Noh, Y. S., Martinez, D. E., Vila Petroff, M. G., Staehelin, L. A., Amasino, R. M., and Guiamet, J. J. (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean, Plant J., 41, 831–844.PubMedCrossRefGoogle Scholar
  122. 122.
    Singh, S., Giri, M. K., Singh, P. K., Siddiqui, A., and Nandi, A. K. (2013) Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants, J. Biosci., 38, 583–592.PubMedCrossRefGoogle Scholar
  123. 123.
    Marino, G., Uria, J. A., Puente, X. S., Quesada, V., Bordallo, J., and Lopez-Otin, C. (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degrada-tion by autophagy, J. Biol. Chem., 278, 3671–3678.PubMedCrossRefGoogle Scholar
  124. 124.
    Kaminskyy, V., and Zhivotovsky, B. (2012) Proteases in autophagy, Biochim. Biophys. Acta, 1824, 44–50.PubMedCrossRefGoogle Scholar
  125. 125.
    Escamez, S., and Tuominen, H. (2014) Programs of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal, J. Exp. Bot., 65, 1313–1321.PubMedCrossRefGoogle Scholar
  126. 126.
    Minina, E. A., Bozhkov, P. V., and Hofius, D. (2014) Autophagy as initiator or executioner of cell death, Trends Plant Sci., 19, 692–697.PubMedCrossRefGoogle Scholar
  127. 127.
    Li, M., Hou, Y., Wang, J., Chen, X., Shao, Z. M., and Yin, X. M. (2011) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates, J. Biol. Chem., 286, 7327–7338.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Woo, J., Park, E., and Dinesh-Kumar, S. P. (2014) Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases, Proc. Natl. Acad. Sci. USA, 111, 863–868.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chichkova, N. V., Shaw, J., Galiullina, R. A., Drury, G. E., Tuzhikov, A. I., Kim, S. H., Kalkum, M., Hong, T. B., Gorshkova, E. N., Torrance, L., Vartapetian, A. B., and Taliansky, M. (2010) Phytaspase, a relocalizable cell death promoting plant protease with caspase specificity, EMBO J., 29, 1149–1161.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Chichkova, N. V., Galiullina, R. A., Taliansky, M. E., and Vartapetian, A. B. (2008) Tissue disruption activates a plant caspase-like protease with TATD cleavage specifici-ty, Plant Stress, 2, 89–95.Google Scholar
  131. 131.
    Dodson, G., and Wlodawer, A. (1998) Catalytic triads and their relatives, Trends Biochem. Sci., 23, 347–352.PubMedCrossRefGoogle Scholar
  132. 132.
    Rautengarten, C., Steinhauser, D., Bussis, D., Stintzi, A., Schaller, A., Kopka, J., and Altmann, T. (2005) Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family, PLoS Comput. Biol., 1, e40.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Schaller, A., Stintzi, A., and Graff, L. (2012) Subtilases–ver-satile tools for protein turnover, plant development, and inter-actions with the environment, Physiol. Plant., 145, 52–66.PubMedCrossRefGoogle Scholar
  134. 134.
    Yamagata, H., Masuzawa, T., Nagaoka, Y., Ohnishi, T., and Iwasaki, T. (1994) Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor, J. Biol. Chem., 269, 32725–32731.PubMedGoogle Scholar
  135. 135.
    Vartapetian, A. B., Tuzhikov, A. I., Chichkova, N. V., Taliansky, M., and Wolpert, T. J. (2011) A plant alternative to animal caspases: subtilisin-like proteases, Cell Death Differ., 18, 1289–1297.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Ottmann, C., Rose, R., Huttenlocher, F., Cedzich, A., Hauske, P., Kaiser, M., Huber, R., and Schaller, A. (2009) Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3, Proc. Natl. Acad. Sci. USA, 106, 17223–17228.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Chichkova, N. V., Galiullina, R. A., Beloshistov, R. E., Balakireva, A. V., and Vartapetian, A. B. (2014) Phytaspases: aspartate-specific proteases involved in plant cell death, Bioorg. Khim., 40, 658–664.PubMedGoogle Scholar
  138. 138.
    Galiullina, R. A., Kasperkiewicz, P., Chichkova, N. V., Szalek, A., Serebryakova, M. V., Poreba, M., Drag, M., and Vartapetian, A. B. (2015) Substrate specificity and possible heterologous targets of phytaspase, a plant cell death protease, J. Biol. Chem., 290, 24806–24815.PubMedCrossRefGoogle Scholar
  139. 139.
    Poreba, M., Szalek, A., Kasperkiewicz, P., and Drag, M. (2014) Positional scanning substrate combinatorial library (PS-SCL) approach to define caspase substrate specificity, Methods Mol. Biol., 1133, 41–59.PubMedCrossRefGoogle Scholar
  140. 140.
    Fomicheva, A. S., Tuzhikov, A. I., Beloshistov, R. E., Trusova, S. V., Galiullina, R. A., Mochalova, L. V., Chichkova, N. V., and Vartapetian, A. B. (2012) Programmed cell death in plants, Biochemistry (Moscow), 77, 1452–1464.CrossRefGoogle Scholar
  141. 141.
    Chichkova, N. V., Kim, S. H., Titova, E. S., Kalkum, M., Morozov, V. S., Rubtsov, Y. P., Kalinina, N. O., Taliansky, M. E., and Vartapetian, A. B. (2004) A plant caspase-like protease activated during the hypersensitive response, Plant Cell, 16, 157–171.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Srivastava, R., Liu, J. X., and Howell, S. H. (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis, Plant J., 56, 219–227.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Coffeen, W. C., and Wolpert, T. J. (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa, Plant Cell, 16, 857–873.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Faro, C., and Gal, S. (2005) Aspartic proteinase content of the Arabidopsis genome, Curr. Prot. Pept. Sci., 6, 493–500.CrossRefGoogle Scholar
  145. 145.
    Dunn, B. M. (2002) Structure and mechanism of the pepsin-like family of aspartic peptidases, Chem. Rev., 102, 4431–4458.PubMedCrossRefGoogle Scholar
  146. 146.
    Geier, G., Banaj, H. J., Heid, H., Bini, L., Pallini, V., and Zwilling, R. (1999) Aspartyl proteases in Caenorhabditis elegans. Isolation, identification and characterization by a combined use of affinity chromatography, two-dimension-al gel electrophoresis, microsequencing and databank analysis, Eur. J. Biochem., 264, 872–879.PubMedCrossRefGoogle Scholar
  147. 147.
    Guo, R., Xu, X., Carole, B., Li, X., Gao, M., Zheng, Y., and Wang, X. (2013) Genome-wide identification, evolu-tionary and expression analysis of the aspartic protease gene superfamily in grape, BMC Genom., 14, 554.CrossRefGoogle Scholar
  148. 148.
    Niu, N., Liang, W., Yang, X., Jin, W., Wilson, Z. A., Hu, J., and Zhang, D. (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice, Nat. Commun., 4, 1445.PubMedCrossRefGoogle Scholar
  149. 149.
    Chen, F., and Foolad, M. R. (1997) Molecular organiza-tion of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration, Plant Mol. Biol., 35, 821–831.PubMedCrossRefGoogle Scholar
  150. 150.
    Ge, X., Dietrich, C., Matsuno, M., Li, G., Berg, H., and Xia, Y. (2005) An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis, EMBO Rep., 6, 282–288.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Phan, H. A., Iacuone, S., Li, S. F., and Parish, R. W. (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal pro-grammed cell death in Arabidopsis thaliana, Plant Cell, 23, 2209–2224.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kurepa, J., and Smalle, J. A. (2008) Structure, function and regulation of plant proteasomes, Biochimie, 90, 324–335.PubMedCrossRefGoogle Scholar
  153. 153.
    Kurepa, J., Wang, S., Li, Y., and Smalle, J. (2009) Proteasome regulation, plant growth and stress tolerance, Plant Signal. Behav., 4, 924–927.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Han, J. J., Lin, W., Oda, Y., Cui, K. M., Fukuda, H., and He, X. Q. (2012) The proteasome is responsible for cas-pase-3-like activity during xylem development, Plant J., 72, 129–141.PubMedCrossRefGoogle Scholar
  155. 155.
    Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M., Fuji, K., Ogasawara, K., Nishimura, M., and Hara-Nishimura, I. (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens, Genes Dev., 23, 2496–2506.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Maidment, J. M., Moore, D., Murphy, G. P., Murphy, G., and Clark, I. M. (1999) Matrix metalloproteinase homo-logues from Arabidopsis thaliana. Expression and activity, J. Biol. Chem., 274, 34706–34710.PubMedCrossRefGoogle Scholar
  157. 157.
    Marino, G., Huesgen, P. F., Eckhard, U., Overall, C. M., Schroder, W. P., and Funk, C. (2014) Family-wide charac-terization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity, Biochem. J., 457, 335–346.PubMedCrossRefGoogle Scholar
  158. 158.
    Hadler-Olsen, E., Fadnes, B., Sylte, I., Uhlin-Hansen, L., and Winberg, J. O. (2011) Regulation of matrix metallopro-teinase activity in health and disease, FEBS J., 278, 28–45.PubMedCrossRefGoogle Scholar
  159. 159.
    Delorme, V. G., McCabe, P. F., Kim, D. J., and Leaver, C. J. (2000) A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber, Plant Physiol., 123, 917–927.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Roberts, I. N., Caputo, C., Criado, M. V., and Funk, C. (2012) Senescence-associated proteases in plants, Physiol. Plant., 145, 130–139.PubMedCrossRefGoogle Scholar
  161. 161.
    Diaz-Mendoza, M., Velasco-Arroyo, B., Gonzalez-Melendi, P., Martinez, M., and Diaz, I. (2014) C1A cys-teine protease–cystatin interactions in leaf senescence, J. Exp. Bot., 65, 3825–3833.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations