Biochemistry (Moscow)

, Volume 80, Issue 13, pp 1647–1654 | Cite as

Bacterial Small Regulatory RNAs and Hfq Protein

  • V. N. MurinaEmail author
  • A. D. Nikulin


Small regulatory RNA (sRNA) is a unique noncoding RNA involved in regulation of gene expression in both eukaryotic and bacterial cells. This short review discusses examples of positive and negative translation regulation by sRNAs in bacteria and participation of Hfq in these processes. The importance of structure investigation of nucleotide–protein and RNA–protein complexes for designing a model of Hfq interaction with both mRNA and sRNA simultaneously is demonstrated.

Key words

Hfq small regulatory RNA sRNA RNA–protein recognition regulation of gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahm, R. (2005) Friedrich Miescher and the discovery of DNA, Dev. Biol., 278, 274–288.PubMedCrossRefGoogle Scholar
  2. 2.
    Portin, P. (2014) The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA, J. Genet., 93, 293–302.PubMedCrossRefGoogle Scholar
  3. 3.
    Sanger, F., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 74, 5463–5467.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ikekawa, F., and Ikekawa, S. (2001) Fruits of human genome project and private venture, and their impact on life science, Yakugaku Zasshi, 121, 845–873.PubMedCrossRefGoogle Scholar
  5. 5.
    Hattori, M. (2005) Finishing the euchromatic sequence of the human genome, Tanpakushitsu Kakusan Koso, 50, 162–168.PubMedGoogle Scholar
  6. 6.
    Ohno, S. (1972) So much “junk” DNA in our genome, Brookhaven Symp. Biol., 23, 366–370.PubMedGoogle Scholar
  7. 7.
    Palazzo, A. F., and Gregory, T. R. (2014) The case for junk DNA, PLoS Genet., 10, e1004351.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tomizawa, J., and Som, T. (1984) Control of ColE1 plas-mid replication: enhancement of binding of RNA I to the primer transcript by the Rom protein, Cell, 38, 871–878.PubMedCrossRefGoogle Scholar
  9. 9.
    Simons, R. W., and Kleckner, N. (1983) Translational con-trol of IS10 transposition, Cell, 34, 683–691.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, R. C., Feinbaum, R. L., and Ambro, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843–854.PubMedCrossRefGoogle Scholar
  11. 11.
    Babski, J., Maier, L.-K., Heyer, R., Jaschinski, K., Prasse, D., Jager, D., Randau, L., Schmitz, R. A., Marchfelder, A., and Soppa, J. (2014) Small regulatory RNAs in Archaea, RNA Biol., 11, 484–493.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Prasse, D., Ehlers, C., Backofen, R., and Schmitz, R. A. (2013) Regulatory RNAs in archaea: first target identifica-tion in Methanoarchaea, Biochem. Soc. Trans., 41, 344–349.PubMedCrossRefGoogle Scholar
  13. 13.
    Jager, D., Sharma, C. M., Thomsen, J., Ehlers, C., Vogel, J., and Schmitz, R. A. (2009) Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability, Proc. Natl. Acad. Sci. USA, 106, 21878–21882.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Livny, J., and Waldor, M. K. (2007) Identification of small RNAs in diverse bacterial species, Curr. Opin. Microbiol., 10, 96–101.PubMedCrossRefGoogle Scholar
  15. 15.
    Altuvia, S. (2007) Identification of bacterial small non-coding RNAs: experimental approaches, Curr. Opin. Microbiol., 10, 257–261.PubMedCrossRefGoogle Scholar
  16. 16.
    Gottesman, S., and Storz, G. (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations, Cold Spring Harb. Perspect. Biol., 3, 1–16.CrossRefGoogle Scholar
  17. 17.
    Marzi, S., and Romby, P. (2012) RNA mimicry, a decoy for regulatory proteins, Mol. Microbiol., 83, 1–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Gottesman, S., and Storz, G. (2015) RNA reflections: con-verging on Hfq, RNA, 21, 511–512.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zhang, A., Altuvia, S., Tiwari, A., Argaman, L., Hengge-Aronis, R., and Storz, G. (1998) The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) pro-tein, EMBO J., 17, 6061–6068.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Massу, E., and Gottesman, S. (2002) A small RNA regu-lates the expression of genes involved in iron metabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA, 99, 4620–4625.CrossRefGoogle Scholar
  21. 21.
    Massу, E., Escorcia, F. E., and Gottesman, S. (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli, Genes Dev., 17, 2374–2383.CrossRefGoogle Scholar
  22. 22.
    Vanderpool, C. K., and Gottesman, S. (2004) Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyru-vate phosphotransferase system, Mol. Microbiol., 54, 1076–1089.PubMedCrossRefGoogle Scholar
  23. 23.
    Morita, T., Maki, K., and Aiba, H. (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs, Genes Dev., 19, 2176–2186.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Morita, T., Mochizuki, Y., and Aiba, H. (2006) Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction, Proc. Natl. Acad. Sci. USA, 103, 4858–4863.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Aiba, H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs, Curr. Opin. Microbiol., 10, 134–139.PubMedCrossRefGoogle Scholar
  26. 26.
    De Lay, N., Schu, D. J., and Gottesman, S. (2013) Bacterial small RNA-based negative regulation: Hfq and its accomplices, J. Biol. Chem., 288, 7996–8003.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Moller, T., Franch, T., Hojrup, P., Keene, D. R., Bachinger, H. P., Brennan, R. G., and Valentin-Hansen, P. (2002) Hfq: a bacterial Sm-like protein that mediates RNA–RNA interaction, Mol. Cell, 9, 23–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Gottesman, S. (2004) The small RNA regulators of Escherichia coli: roles and mechanisms, Annu. Rev. Microbiol., 58, 303–328.PubMedCrossRefGoogle Scholar
  29. 29.
    Beisel, C. L., Updegrove, T. B., Janson, B. J., and Storz, G. (2012) Multiple factors dictate target selection by Hfq-binding small RNAs, EMBO J., 31, 1961–1974.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Henderson, C. A., Vincent, H. A., Casamento, A., Stone, C. M., Phillips, J. O., Cary, P. D., Sobott, F., Gowers, D. M., Taylor, J. E., and Callaghan, A. J. (2013) Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregu-lation of rpoS, RNA, 19, 1089–1104.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lease, R. A., Cusick, M. E., and Belfort, M. (1998) Riboregulation in Escherichia coli: DsrA RNA acts by RNA–RNA interactions at multiple loci, Proc. Natl. Acad. Sci. USA, 95, 12456–12461.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T., and Gottesman, S. (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independ-ent of its action as an antisilencer of transcription, Proc. Natl. Acad. Sci. USA, 95, 12462–12467.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kandror, O., DeLeon, A., and Goldberg, A. L. (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures, Proc. Natl. Acad. Sci. USA, 99, 9727–9732.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Soper, T. J., and Woodson, S. A. (2008) The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA, RNA, 14, 1907–1917.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    McCullen, C. A., Benhammou, J. N., Majdalani, N., and Gottesman, S. (2010) Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation, J. Bacteriol., 192, 5559–5571.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mandin, P., and Gottesman, S. (2010) Integrating anaero-bic/aerobic sensing and the general stress response through the ArcZ small RNA, EMBO J., 29, 3094–3107.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nielsen, J. S., Lei, L. K., Ebersbach, T., Olsen, A. S., Klitgaard, J. K., Valentin-Hansen, P., and Kallipolitis, B. H. (2010) Defining a role for Hfq in Gram-positive bacte-ria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes, Nucleic Acids Res., 38, 907–919.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Geissmann, T. A., and Touati, D. (2004) Hfq, a new chap-eroning role: binding to messenger RNA determines access for small RNA regulator, EMBO J., 23, 396–405.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kawamoto, H., Koide, Y., Morita, T., and Aiba, H. (2006) Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq, Mol. Microbiol., 61, 1013–1022.PubMedCrossRefGoogle Scholar
  40. 40.
    Rasmussen, A. A., Eriksen, M., Gilany, K., Udesen, C., Franch, T., Petersen, C., and Valentin-Hansen, P. (2005) Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control, Mol. Microbiol., 58, 1421–1429.PubMedCrossRefGoogle Scholar
  41. 41.
    Sledjeski, D. D., Gupta, A., and Gottesman, S. (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli, EMBO J., 15, 3993–4000.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen, S., Zhang, A., Blyn, L. B., and Storz, G. (2004) MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli, J. Bacteriol., 186, 6689–6697.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Storz, G., Opdyke, J. A., and Zhang, A. (2004) Controlling mRNA stability and translation with small, noncoding RNAs, Curr. Opin. Microbiol., 7, 140–144.PubMedCrossRefGoogle Scholar
  44. 44.
    Vassilieva, I. M., and Garber, M. B. (2002) The regulatory role of the Hfq protein in bacterial cells, Mol. Biol. (Moscow), 36, 785–791.CrossRefGoogle Scholar
  45. 45.
    Masse, E., Escorcia, F. E., and Gottesman, S. (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli, Genes Dev., 17, 2374–2383.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Moll, I., Afonyushkin, T., Vytvytska, O., and Kaberdin, V. R. (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs, RNA, 9, 1308–1314.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Vytvytska, O., Moll, I., Kaberdin, V. R., Von Gabain, A., and Blasi, U. (2000) Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding, Genes Dev., 14, 1109–1118.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Valentin-Hansen, P., and Eriksen, M. (2004) MicroReview. The bacterial Sm-like protein Hfq: a key player in RNA transactions, Mol. Microbiol., 51, 1525–1533.PubMedCrossRefGoogle Scholar
  49. 49.
    Dimastrogiovanni, D., Frohlich, K. S., Bandyra, K. J., Bruce, H. A., Hohensee, S., Vogel, J., and Luisi, B. F. (2014) Recognition of the small regulatory RNA RydC by the bacterial Hfq protein, Elife, 3, e05375.Google Scholar
  50. 50.
    Kovach, A. R., Hoff, K. E., Canty, J. T., Orans, J., and Brennan, R. G. (2014) Recognition of U-rich RNA by Hfq from the Gram-positive pathogen Listeria monocytogenes, RNA, 20, 1548–1559.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Murina, V. N., and Nikulin, A. D. (2011) RNA binding Sm-Like proteins of Bacteria and Archaea. Similarity and difference in structure and function, Biochemistry (Moscow), 76, 1434–1449.CrossRefGoogle Scholar
  52. 52.
    Schumacher, M. A., Pearson, R. F., Moller, T., Valentin-Hansen, P., and Brennan, R. G. (2002) Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: a bacterial Sm-like protein, EMBO J., 21, 3546–3556.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sauer, E., and Weichenrieder, O. (2011) Structural basis for RNA 3′-end recognition by Hfq, Proc. Natl. Acad. Sci. USA, 108, 13065–13070.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang, W., Wang, L., Zou, Y., Zhang, J., Gong, Q., Wu, J., and Shi, Y. (2011) Cooperation of Escherichia coli Hfq hexamers in DsrA binding, Genes Dev., 25, 2106–2117.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Link, T. M., Valentin-Hansen, P., and Brennan, R. G. (2009) Structure of Escherichia coli Hfq bound to polyri-boadenylate RNA, Proc. Natl. Acad. Sci. USA, 106, 19292–19297.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hammerle, H., Beich-Frandsen, M., Vecerek, B., Rajkowitsch, L., Carugo, O., Djinovic-Carugo, K., and Blasi, U. (2012) Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaper-one Hfq, PLoS One, 7, e50892.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Murina, V. N., Melnik, B. S., Filimonov, V. V., Uhlein, M., Weiss, M. S., Muller, U., and Nikulin, A. D. (2014) Effect of conserved intersubunit amino acid substitutions on Hfq protein structure and stability, Biochemistry (Moscow), 79, 469–477.CrossRefGoogle Scholar
  58. 58.
    Arluison, V., Mutyam, S. K., Mura, C., Marco, S., and Sukhodolets, M. V. (2007) Sm-like protein Hfq: location of the ATP-binding site and the effect of ATP on Hfq–RNA complexes, Protein Sci., 16, 1830–1841.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wang, W., Wang, L., Wu, J., Gong, Q., and Shi, Y. (2013) Hfq-bridged ternary complex is important for translation activation of rpoS by DsrA, Nucleic Acids Res., 41, 5938–5948.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Someya, T., Baba, S., Fujimoto, M., Kawai, G., and Kumasaka, T. (2012) Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: insight into RNA-binding properties of bacterial Hfq, Nucleic Acids Res., 40, 1856–1867.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Robinson, K. E., Orans, J., Kovach, A. R., Link, T. M., and Brennan, R. G. (2013) Mapping Hfq–RNA interaction surfaces using tryptophan fluorescence quenching, Nucleic Acids Res., 42, 1–14.Google Scholar
  62. 62.
    Sauer, E. (2013) Structure and RNA-binding properties of the bacterial LSm protein Hfq, RNA Biol., 10, 610–618.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Peng, Y., Curtis, J. E., Fang, X., and Woodson, S. A. (2014) Structural model of an mRNA in complex with the bacter-ial chaperone Hfq, Proc. Natl. Acad. Sci. USA, 111, 17134–17139.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Murina, V., Lekontseva, N., and Nikulin, A. (2013) Hfq binds ribonucleotides in three different RNA-binding sites, Acta Crystallogr. D Biol. Crystallogr., 69, 1504–1513.PubMedCrossRefGoogle Scholar
  65. 65.
    Panja, S., Schu, D. J., and Woodson, S. A. (2013) Conserved arginines on the rim of Hfq catalyze base pair formation and exchange, Nucleic Acids Res., 41, 7536–7546.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wilusz, C. J., and Wilusz, J. (2013) Lsm proteins and Hfq: life at the 3′-end, RNA Biol., 10, 592–601.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Sauer, E., Schmidt, S., and Weichenrieder, O. (2012) Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition, Proc. Natl. Acad. Sci. USA, 109, 9396–93401.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations