Biochemistry (Moscow)

, Volume 80, Issue 13, pp 1633–1646 | Cite as

Role of Small Noncoding RNAs in Bacterial Metabolism

  • T. L. AzhikinaEmail author
  • D. V. Ignatov
  • E. G. Salina
  • M. V. Fursov
  • A. S. Kaprelyants


The study of prokaryotic small RNAs is one of the most important directions in modern molecular biology. In the last decade, multiple short regulatory transcripts have been found in prokaryotes, and for some of them functional roles have been elucidated. Bacterial small RNAs are implicated in the regulation of transcription and translation, and they affect mRNA stability and gene expression via different mechanisms, including changes in mRNA conformation and interaction with proteins. Most small RNAs are expressed in response to external factors, and they help bacteria to adapt to changing environmental conditions. Bacterial infections of various origins remain a serious medical problem, despite significant progress in fighting them. Discovery of mechanisms that bacteria employ to survive in infected organisms and ways to block these mechanisms is promising for finding new treatments for bacterial infections. Regulation of pathogenesis with small RNAs is an attractive example of such mechanisms. This review considers the role of bacterial small RNAs in adaptation to stress conditions. We pay special attention to the role of small RNAs in Mycobacterium tuberculosis infection, in particular during establishment and maintenance of latent infection.

Key words

bacteria small noncoding RNAs Hfq regulation of gene expression stress virulence Mycobacterium tuberculosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Livny, J. (2007) Efficient annotation of bacterial genomes for small, noncoding RNAs using the integrative computational tool sRNAPredict2, Methods Mol. Biol., 395, 475–488.PubMedCrossRefGoogle Scholar
  2. 2.
    Montange, R. K., and Batey, R. T. (2008) Riboswitches: emerging themes in RNA structure and function, Annu. Rev. Biophys., 37, 117–133.PubMedCrossRefGoogle Scholar
  3. 3.
    Garst, A. D., Edwards, A. L., and Batey, R. T. (2011) Riboswitches: structures and mechanisms, Cold Spring Harb. Perspect. Biol., 3.Google Scholar
  4. 4.
    Barrangou, R., and Horvath, P. (2012) CRISPR: new hori-zons in phage resistance and strain identification, Annu. Rev. Food Sci. Technol., 3, 143–162.PubMedCrossRefGoogle Scholar
  5. 5.
    Wadler, C. S., and Vanderpool, C. K. (2007) A dual func-tion for a bacterial small RNA: SgrS performs base pairing dependent regulation and encodes a functional polypep-tide, Proc. Natl. Acad. Sci. USA, 104, 20454–20459.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Silvaggi, J. M., Perkins, J. B., and Losick, R. (2005) Small untranslated RNA antitoxin in Bacillus subtilis, J. Bacteriol., 187, 6641–6650.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Saramago, M., Barria, C., Dos Santos, R. F., Silva, I. J., Pobre, V., Domingues, S., Andrade, J. M., Viegas, S. C., and Arraiano, C. M. (2014) The role of RNases in the reg-ulation of small RNAs, Curr. Opin. Microbiol., 18, 105–115.PubMedCrossRefGoogle Scholar
  8. 8.
    Kawano, M., Aravind, L., and Storz, G. (2007) An anti-sense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin, Mol. Microbiol., 64, 738–754.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Opdyke, J. A., Kang, J. G., and Storz, G. (2004) GadY, a small-RNA regulator of acid response genes in Escherichia coli, J. Bacteriol., 186, 6698–6705.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Stork, M., Di Lorenzo, M., Welch, T. J., and Crosa, J. H. (2007) Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an anti-sense RNA, J. Bacteriol., 189, 3479–3488.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kawamoto, H., Morita, T., Shimizu, A., Inada, T., and Aiba, H. (2005) Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli, Genes Dev., 19, 328–338.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Vogel, J., and Luisi, B. F. (2011) Hfq and its constellation of RNA, Nat. Rev. Microbiol., 9, 578–589.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gottesman, S., and Storz, G. (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations, Cold Spring Harb. Perspect. Biol., 3.Google Scholar
  14. 14.
    Su, Q., Schuppli, D., Tsui, H. C., Winkler, M. E., and Weber, H. (1997) Strongly reduced phage Qβ replication, but normal phage MS2 replication in an Escherichia coli K12 mutant with inactivated Qβ host factor (hfq) gene, Virology, 227, 211–214.PubMedCrossRefGoogle Scholar
  15. 15.
    Wagner, E. G. (2013) Cycling of RNAs on Hfq, RNA Biol., 10, 619–626.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bojer, M. S., Jakobsen, H., Struve, C., Krogfelt, K. A., and Lobner-Olesen, A. (2012) Lack of the RNA chaperone Hfq attenuates pathogenicity of several Escherichia coli patho-types towards Caenorhabditis elegans, Microbes Infect., 14, 1034–1039.PubMedCrossRefGoogle Scholar
  17. 17.
    Chao, Y., and Vogel, J. (2010) The role of Hfq in bacterial pathogens, Curr. Opin. Microbiol., 13, 24–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Oliva, G., Sahr, T., and Buchrieser, C. (2015) Small RNAs, 5′ UTR elements and RNA-binding proteins in intracellu-lar bacteria: impact on metabolism and virulence, FEMS Microbiol. Rev., 39, 331–349.PubMedCrossRefGoogle Scholar
  19. 19.
    Folichon, M., Arluison, V., Pellegrini, O., Huntzinger, E., Regnier, P., and Hajnsdorf, E. (2003) The poly(A) binding protein Hfq protects RNA from RNase E and exoribonu-cleolytic degradation, Nucleic Acids Res., 31, 7302–7310.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    De Lay, N., Schu, D. J., and Gottesman, S. (2013) Bacterial small RNA-based negative regulation: Hfq and its accomplices, J. Biol. Chem., 288, 7996–8003.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Waters, L. S., and Storz, G. (2009) Regulatory RNAs in bacteria, Cell, 136, 615–628.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Masse, E., Escorcia, F. E., and Gottesman, S. (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli, Genes Dev., 17, 2374–2383.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Aiba, H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs, Curr. Opin. Microbiol., 10, 134–139.PubMedCrossRefGoogle Scholar
  24. 24.
    Majdalani, N., Vanderpool, C. K., and Gottesman, S. (2005) Bacterial small RNA regulators, Crit. Rev. Biochem. Mol. Biol., 40, 93–113.PubMedCrossRefGoogle Scholar
  25. 25.
    Christiansen, J. K., Larsen, M. H., Ingmer, H., Sogaard-Andersen, L., and Kallipolitis, B. H. (2004) The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence, J. Bacteriol., 186, 3355–3362.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Andrade, J. M., Pobre, V., Matos, A. M., and Arraiano, C. M. (2012) The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq, RNA, 18, 844–855.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Morita, T., Maki, K., and Aiba, H. (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs, Genes Dev., 19, 2176–2186.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Valentin-Hansen, P., Eriksen, M., and Udesen, C. (2004) The bacterial Sm-like protein Hfq: a key player in RNA transactions, Mol. Microbiol., 51, 1525–1533.PubMedCrossRefGoogle Scholar
  29. 29.
    Arnvig, K., and Young, D. (2012) Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis, RNA Biol., 9, 427–436.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bohn, C., Rigoulay, C., Chabelskaya, S., Sharma, C. M., Marchais, A., Skorski, P., Borezee-Durant, E., Barbet, R., Jacquet, E., Jacq, A., Gautheret, D., Felden, B., Vogel, J., and Bouloc, P. (2010) Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism, Nucleic Acids Res., 38, 6620–6636.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Song, T., Mika, F., Lindmark, B., Liu, Z., Schild, S., Bishop, A., Zhu, J., Camilli, A., Johansson, J., Vogel, J., and Wai, S. N. (2008) A new Vibrio cholerae sRNA modu-lates colonization and affects release of outer membrane vesicles, Mol. Microbiol., 70, 100–111.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chaulk, S. G., Smith Frieday, M. N., Arthur, D. C., Culham, D. E., Edwards, R. A., Soo, P., Frost, L. S., Keates, R. A., Glover, J. N., and Wood, J. M. (2011) ProQ is an RNA chaperone that controls ProP levels in Escherichia coli, Biochemistry, 50, 3095–3106.PubMedCrossRefGoogle Scholar
  33. 33.
    Pandey, S. P., Minesinger, B. K., Kumar, J., and Walker, G. C. (2011) A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq, Nucleic Acids Res., 39, 4691–4708.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Romby, P., and Charpentier, E. (2010) An overview of RNAs with regulatory functions in Gram-positive bacteria, Cell. Mol. Life Sci., 67, 217–237.PubMedCrossRefGoogle Scholar
  35. 35.
    Michaux, C., Verneuil, N., Hartke, A., and Giard, J. C. (2014) Physiological roles of small RNA molecules, Microbiology, 160, 1007–1019.PubMedCrossRefGoogle Scholar
  36. 36.
    Dubey, A. K., Baker, C. S., Suzuki, K., Jones, A. D., Pandit, P., Romeo, T., and Babitzke, P. (2003) CsrA regu-lates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA tran-script, J. Bacteriol., 185, 4450–4460.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Babitzke, P., and Romeo, T. (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins, Curr. Opin. Microbiol., 10, 156–163.PubMedCrossRefGoogle Scholar
  38. 38.
    Pernestig, A. K., Georgellis, D., Romeo, T., Suzuki, K., Tomenius, H., Normark, S., and Melefors, O. (2003) The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and glu-coneogenic carbon sources, J. Bacteriol., 185, 843–853.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Jonas, K., and Melefors, O. (2009) The Escherichia coli CsrB and CsrC small RNAs are strongly induced during growth in nutrient-poor medium, FEMS Microbiol. Lett., 297, 80–86.PubMedCrossRefGoogle Scholar
  40. 40.
    Altier, C., Suyemoto, M., and Lawhon, S. D. (2000) Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA, Infect. Immun., 68, 6790–6797.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Julio, S. M., Heithoff, D. M., and Mahan, M. J. (2000) ssrA (tmRNA) plays a role in Salmonella enterica serovar typhimurium pathogenesis, J. Bacteriol., 182, 1558–1563.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Heroven, A. K., Bohme, K., and Dersch, P. (2012) The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence, RNA Biol., 9, 379–391.PubMedCrossRefGoogle Scholar
  43. 43.
    Geissmann, T., Chevalier, C., Cros, M. J., Boisset, S., Fechter, P., Noirot, C., Schrenzel, J., Francois, P., Vandenesch, F., Gaspin, C., and Romby, P. (2009) A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation, Nucleic Acids Res., 37, 7239–7257.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Frohlich, K. S., Papenfort, K., Berger, A. A., and Vogel, J. (2012) A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD, Nucleic Acids Res., 40, 3623–3640.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Santiviago, C. A., Toro, C. S., Hidalgo, A. A., Youderian, P., and Mora, G. C. (2003) Global regulation of the Salmonella enterica serovar typhimurium major porin, OmpD, J. Bacteriol., 185, 5901–5905.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pulvermacher, S. C., Stauffer, L. T., and Stauffer, G. V. (2008) The role of the small regulatory RNA GcvB in GcvB/mRNA posttranscriptional regulation of oppA and dppA in Escherichia coli, FEMS Microbiol. Lett., 281, 42–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Pulvermacher, S. C., Stauffer, L. T., and Stauffer, G. V. (2009) Role of the Escherichia coli Hfq protein in GcvB regulation of oppA and dppA mRNAs, Microbiology, 155, 115–123.PubMedCrossRefGoogle Scholar
  48. 48.
    Pulvermacher, S. C., Stauffer, L. T., and Stauffer, G. V. (2009) Role of the sRNA GcvB in regulation of cycA in Escherichia coli, Microbiology, 155, 106–114.PubMedCrossRefGoogle Scholar
  49. 49.
    Pulvermacher, S. C., Stauffer, L. T., and Stauffer, G. V. (2009) The small RNA GcvB regulates sstT mRNA expres-sion in Escherichia coli, J. Bacteriol., 191, 238–248.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sharma, C. M., Darfeuille, F., Plantinga, T. H., and Vogel, J. (2007) A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites, Genes Dev., 21, 2804–2817.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sharma, C. M., Papenfort, K., Pernitzsch, S. R., Mollenkopf, H. J., Hinton, J. C., and Vogel, J. (2011) Pervasive posttranscriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA, Mol. Microbiol., 81, 1144–1165.PubMedCrossRefGoogle Scholar
  52. 52.
    Urbanowski, M. L., Stauffer, L. T., and Stauffer, G. V. (2000) The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli, Mol. Microbiol., 37, 856–868.PubMedCrossRefGoogle Scholar
  53. 53.
    Stauffer, L. T., and Stauffer, G. V. (2012) The Escherichia coli GcvB sRNA uses genetic redundancy to control cycA expression, ISRN Microbiol., doi: 10.5402/2012/636273.Google Scholar
  54. 54.
    De Lay, N., and Gottesman, S. (2009) The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutri-tional status to group behavior, J. Bacteriol., 191, 461–476.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Johansen, J., Eriksen, M., Kallipolitis, B., and Valentin-Hansen, P. (2008) Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP-and σE-dependent CyaR-ompX regulatory case, J. Mol. Biol., 383, 1–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Papenfort, K., Pfeiffer, V., Lucchini, S., Sonawane, A., Hinton, J. C., and Vogel, J. (2008) Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis, Mol. Microbiol., 68, 890–906.PubMedCrossRefGoogle Scholar
  57. 57.
    Masse, E., and Gottesman, S. (2002) A small RNA regu-lates the expression of genes involved in iron metabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA, 99, 4620–4625.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Masse, E., Vanderpool, C. K., and Gottesman, S. (2005) Effect of RyhB small RNA on global iron use in Escherichia coli, J. Bacteriol., 187, 6962–6971.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Vecerek, B., Moll, I., and Blasi, U. (2007) Control of Fur synthesis by the non-coding RNA RyhB and iron-respon-sive decoding, EMBO J., 26, 965–975.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wilderman, P. J., Sowa, N. A., Fitzgerald, D. J., Fitzgerald, P. C., Gottesman, S., Ochsner, U. A., and Vasil, M. L. (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeo-stasis, Proc. Natl. Acad. Sci. USA, 101, 9792–9797.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mellin, J. R., Goswami, S., Grogan, S., Tjaden, B., and Genco, C. A. (2007) A novel fur-and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis, J. Bacteriol., 189, 3686–3694.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Metruccio, M. M., Fantappie, L., Serruto, D., Muzzi, A., Roncarati, D., Donati, C., Scarlato, V., and Delany, I. (2009) The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of suc-cinate dehydrogenase in Neisseria meningitidis, J. Bacteriol., 191, 1330–1342.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gaballa, A., Antelmann, H., Aguilar, C., Khakh, S. K., Song, K. B., Smaldone, G. T., and Helmann, J. D. (2008) The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins, Proc. Natl. Acad. Sci. USA, 105, 11927–11932.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jin, Y., Watt, R. M., Danchin, A., and Huang, J. D. (2009) Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli, BMC Genomics, 10, 165.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Englesberg, E., Anderson, R. L., Weinberg, R., Lee, N., Hoffee, P., Huttenhauer, G., and Boyer, H. (1962) L-Arabinose-sensitive, L-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli, J. Bacteriol., 84, 137–146.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Irani, M. H., and Maitra, P. K. (1977) Properties of Escherichia coli mutants deficient in enzymes of glycolysis, J. Bacteriol., 132, 398–410.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Vanderpool, C. K., and Gottesman, S. (2004) Involvement of a novel transcriptional activator and small RNA in post-tran-scriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system, Mol. Microbiol., 54, 1076–1089.PubMedCrossRefGoogle Scholar
  68. 68.
    Maki, K., Morita, T., Otaka, H., and Aiba, H. (2010) A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA, Mol. Microbiol., 76, 782–792.PubMedCrossRefGoogle Scholar
  69. 69.
    Rice, J. B., and Vanderpool, C. K. (2011) The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes, Nucleic Acids Res., 39, 3806–3819.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Durand, S., and Storz, G. (2010) Reprogramming of anaerobic metabolism by the FnrS small RNA, Mol. Microbiol., 75, 1215–1231.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Trun, N. J., and Silhavy, T. J. (1989) PrlC, a suppressor of signal sequence mutations in Escherichia coli, can direct the insertion of the signal sequence into the membrane, J. Mol. Biol., 205, 665–676.PubMedCrossRefGoogle Scholar
  72. 72.
    Jiang, X., Zhang, M., Ding, Y., Yao, J., Chen, H., Zhu, D., and Muramatu, M. (1998) Escherichia coli prlC gene encodes a trypsin-like proteinase regulating the cell cycle, J. Biochem., 124, 980–985.PubMedCrossRefGoogle Scholar
  73. 73.
    Jain, R., and Chan, M. K. (2007) Support for a potential role of E. coli oligopeptidase A in protein degradation, Biochem. Biophys. Res. Commun., 359, 486–490.PubMedCrossRefGoogle Scholar
  74. 74.
    Sonnleitner, E., Gonzalez, N., Sorger-Domenigg, T., Heeb, S., Richter, A. S., Backofen, R., Williams, P., Huttenhofer, A., Haas, D., and Blasi, U. (2011) The small RNA PhrS stimulates synthesis of the Pseudomonas aerugi-nosa quinolone signal, Mol. Microbiol., 80, 868–885.PubMedCrossRefGoogle Scholar
  75. 75.
    Altuvia, S., Weinstein-Fischer, D., Zhang, A., Postow, L., and Storz, G. (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimu-tator, Cell, 90, 43–53.PubMedCrossRefGoogle Scholar
  76. 76.
    Altuvia, S., Zhang, A., Argaman, L., Tiwari, A., and Storz, G. (1998) The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding, EMBO J., 17, 6069–6075.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Argaman, L., and Altuvia, S. (2000) fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex, J. Mol. Biol., 300, 1101–1112.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang, A., Altuvia, S., Tiwari, A., Argaman, L., Hengge-Aronis, R., and Storz, G. (1998) The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) pro-tein, EMBO J., 17, 6061–6068.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rasmussen, A. A., Eriksen, M., Gilany, K., Udesen, C., Franch, T., Petersen, C., and Valentin-Hansen, P. (2005) Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control, Mol. Microbiol., 58, 1421–1429.PubMedCrossRefGoogle Scholar
  80. 80.
    Udekwu, K. I., Darfeuille, F., Vogel, J., Reimegard, J., Holmqvist, E., and Wagner, E. G. (2005) Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA, Genes Dev., 19, 2355–2366.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Papenfort, K., Bouvier, M., Mika, F., Sharma, C. M., and Vogel, J. (2010) Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA, Proc. Natl. Acad. Sci. USA, 107, 20435–20440.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Papenfort, K., Pfeiffer, V., Mika, F., Lucchini, S., Hinton, J. C., and Vogel, J. (2006) σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global Omp mRNA decay, Mol. Microbiol., 62, 1674–1688.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Johansen, J., Rasmussen, A. A., Overgaard, M., and Valentin-Hansen, P. (2006) Conserved small non-coding RNAs that belong to the σE regulon: role in down-regula-tion of outer membrane proteins, J. Mol. Biol., 364, 1–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Miller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K., and Bassler, B. L. (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae, Cell, 110, 303–314.PubMedCrossRefGoogle Scholar
  85. 85.
    Bassler, B. L., Wright, M., and Silverman, M. R. (1994) Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi, Mol. Microbiol., 12, 403–412.PubMedCrossRefGoogle Scholar
  86. 86.
    Freeman, J. A., and Bassler, B. L. (1999) Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi, J. Bacteriol., 181, 899–906.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Lilley, B. N., and Bassler, B. L. (2000) Regulation of quo-rum sensing in Vibrio harveyi by LuxO and σ-54, Mol. Microbiol., 36, 940–954.PubMedCrossRefGoogle Scholar
  88. 88.
    Bardill, J. P., Zhao, X., and Hammer, B. K. (2011) The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions, Mol. Microbiol., 80, 1381–1394.PubMedCrossRefGoogle Scholar
  89. 89.
    Lenz, D. H., Mok, K. C., Lilley, B. N., Kulkarni, R. V., Wingreen, N. S., and Bassler, B. L. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae, Cell, 118, 69–82.PubMedCrossRefGoogle Scholar
  90. 90.
    Rutherford, S. T., Van Kessel, J. C., Shao, Y., and Bassler, B. L. (2011) AphA and LuxR/HapR reciprocally control quorum sensing in vibrios, Genes Dev., 25, 397–408.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hammer, B. K., and Bassler, B. L. (2007) Regulatory small RNAs circumvent the conventional quorum sensing path-way in pandemic Vibrio cholerae, Proc. Natl. Acad. Sci. USA, 104, 11145–11149.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Korem, M., Gov, Y., Kiran, M. D., and Balaban, N. (2005) Transcriptional profiling of target of RNAIII-acti-vating protein, a master regulator of staphylococcal viru-lence, Infect. Immun., 73, 6220–6228.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chabelskaya, S., Gaillot, O., and Felden, B. (2010) A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-eva-sion molecule, PLoS Pathog., 6, e1000927.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Leday, T. V., Gold, K. M., Kinkel, T. L., Roberts, S. A., Scott, J. R., and McIver, K. S. (2008) TrxR, a new CovR-repressed response regulator that activates the Mga viru-lence regulon in group A Streptococcus, Infect. Immun., 76, 4659–4668.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Roberts, S. A., and Scott, J. R. (2007) RivR and the small RNA RivX: the missing links between the CovR regulato-ry cascade and the Mga regulon, Mol. Microbiol., 66, 1506–1522.PubMedGoogle Scholar
  96. 96.
    Kreikemeyer, B., Boyle, M. D., Buttaro, B. A., Heinemann, M., and Podbielski, A. (2001) Group A strep-tococcal growth phase-associated virulence factor regula-tion by a novel operon (Fas) with homologies to two-com-ponent-type regulators requires a small RNA molecule, Mol. Microbiol., 39, 392–406.PubMedCrossRefGoogle Scholar
  97. 97.
    Klenk, M., Koczan, D., Guthke, R., Nakata, M., Thiesen, H. J., Podbielski, A., and Kreikemeyer, B. (2005) Global epithelial cell transcriptional responses reveal Streptococcus pyogenes Fas regulator activity association with bacterial aggressiveness, Cell Microbiol., 7, 1237–1250.PubMedCrossRefGoogle Scholar
  98. 98.
    Mangold, M., Siller, M., Roppenser, B., Vlaminckx, B. J., Penfound, T. A., Klein, R., Novak, R., Novick, R. P., and Charpentier, E. (2004) Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA mole-cule, Mol. Microbiol., 53, 1515–1527.PubMedCrossRefGoogle Scholar
  99. 99.
    Dye, C. (2006) Global epidemiology of tuberculosis, Lancet, 367, 938–940.PubMedCrossRefGoogle Scholar
  100. 100.
    Giangrossi, M., Prosseda, G., Tran, C. N., Brandi, A., Colonna, B., and Falconi, M. (2010) A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri, Nucleic Acids Res., 38, 3362–3375.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Corbett, E. L. (2003) HIV and tuberculosis: surveillance revisited, Int. J. Tuberc. Lung Dis., 7, 709.PubMedGoogle Scholar
  102. 102.
    Corbett, E. L., Watt, C. J., Walker, N., Maher, D., Williams, B. G., Raviglione, M. C., and Dye, C. (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic, Arch. Intern. Med., 163, 1009–1021.PubMedCrossRefGoogle Scholar
  103. 103.
    Ignatov, D., Malakho, S., Majorov, K., Skvortsov, T., Apt, A., and Azhikina, T. (2013) RNA-Seq analysis of Mycobacterium avium non-coding transcriptome, PLoS One, 8, e74209.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Arnvig, K. B., Comas, I., Thomson, N. R., Houghton, J., Boshoff, H. I., Croucher, N. J., Rose, G., Perkins, T. T., Parkhill, J., Dougan, G., and Young, D. B. (2011) Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis, PLoS Pathog, 7, e1002342.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Arnvig, K. B., and Young, D. B. (2009) Identification of small RNAs in Mycobacterium tuberculosis, Mol. Microbiol., 73, 397–408.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    DiChiara, J. M., Contreras-Martinez, L. M., Livny, J., Smith, D., McDonough, K. A., and Belfort, M. (2010) Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis, Nucleic Acids Res., 38, 4067–4078.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Haning, K., Cho, S. H., and Contreras, L. M. (2014) Small RNAs in mycobacteria: an unfolding story, Front. Cell. Infect. Microbiol., 4, 96.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Li, S. K., Ng, P. K., Qin, H., Lau, J. K., Lau, J. P., Tsui, S. K., Chan, T. F., and Lau, T. C. (2013) Identification of small RNAs in Mycobacterium smegmatis using heterolo-gous Hfq, RNA, 19, 74–84.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Miotto, P., Forti, F., Ambrosi, A., Pellin, D., Veiga, D. F., Balazsi, G., Gennaro, M. L., Di Serio, C., Ghisotti, D., and Cirillo, D. M. (2012) Genome-wide discovery of small RNAs in Mycobacterium tuberculosis, PLoS One, 7, e51950.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Pellin, D., Miotto, P., Ambrosi, A., Cirillo, D. M., and Di Serio, C. (2012) A genome-wide identification analysis of small regulatory RNAs in Mycobacterium tuberculosis by RNA-Seq and conservation analysis, PLoS One, 7, e32723.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Tsai, C. H., Baranowski, C., Livny, J., McDonough, K. A., Wade, J. T., and Contreras, L. M. (2013) Identification of novel sRNAs in mycobacterial species, PLoS One, 8, e79411.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lamichhane, G., Arnvig, K. B., and McDonough, K. A. (2013) Definition and annotation of (myco)bacterial non-coding RNA, Tuberculosis (Edinb.), 93, 26–29.CrossRefGoogle Scholar
  113. 113.
    Pelly, S., Bishai, W. R., and Lamichhane, G. (2012) A screen for non-coding RNA in Mycobacterium tuberculosis reveals a cAMP-responsive RNA that is expressed during infection, Gene, 500, 85–92.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Hartkoorn, R. C., Sala, C., Uplekar, S., Busso, P., Rougemont, J., and Cole, S. T. (2012) Genome-wide def-inition of the SigF regulon in Mycobacterium tuberculosis, J. Bacteriol., 194, 2001–2009.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Solans, L., Gonzalo-Asensio, J., Sala, C., Benjak, A., Uplekar, S., Rougemont, J., Guilhot, C., Malaga, W., Martin, C., and Cole, S. T. (2014) The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis, PLoS Pathog., 10, e1004183.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wiker, H. G., and Harboe, M. (1992) The antigen 85 com-plex: a major secretion product of Mycobacterium tubercu-losis, Microbiol. Rev., 56, 648–661.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Flores, A. R., Parsons, L. M., and Pavelka, M. S., Jr. (2005) Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics, Microbiology, 151, 521–532.PubMedCrossRefGoogle Scholar
  118. 118.
    Dittrich, D., Keller, C., Ehlers, S., Schultz, J. E., and Sander, P. (2006) Characterization of a Mycobacterium tuberculosis mutant deficient in pH-sensing adenylate cyclase Rv1264, Int. J. Med. Microbiol., 296, 563–566.PubMedCrossRefGoogle Scholar
  119. 119.
    Gazdik, M. A., Bai, G., Wu, Y., and McDonough, K. A. (2009) Rv1675c (cmr) regulates intramacrophage and cyclic AMP-induced gene expression in Mycobacterium tuberculosis complex mycobacteria, Mol. Microbiol., 71, 434–448.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Agarwal, N., Lamichhane, G., Gupta, R., Nolan, S., and Bishai, W. R. (2009) Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase, Nature, 460, 98–102.PubMedCrossRefGoogle Scholar
  121. 121.
    Kumar, A., Toledo, J. C., Patel, R. P., Lancaster, J. R., Jr., and Steyn, A. J. (2007) Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor, Proc. Natl. Acad. Sci. USA, 104, 11568–11573.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Honaker, R. W., Leistikow, R. L., Bartek, I. L., and Voskuil, M. I. (2009) Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy, Infect. Immun., 77, 3258–3263.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Weinberg, Z., Barrick, J. E., Yao, Z., Roth, A., Kim, J. N., Gore, J., Wang, J. X., Lee, E. R., Block, K. F., Sudarsan, N., Neph, S., Tompa, M., Ruzzo, W. L., and Breaker, R. R. (2007) Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline, Nucleic Acids Res., 35, 4809–4819.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Chang, J. C., Miner, M. D., Pandey, A. K., Gill, W. P., Harik, N. S., Sassetti, C. M., and Sherman, D. R. (2009) igr genes and Mycobacterium tuberculosis cholesterol metabolism, J. Bacteriol., 191, 5232–5239.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Panek, J., Krasny, L., Bobek, J., Jezkova, E., Korelusova, J., and Vohradsky, J. (2011) The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures, Nucleic Acids Res., 39, 3418–3426.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Barrick, J. E., Sudarsan, N., Weinberg, Z., Ruzzo, W. L., and Breaker, R. R. (2005) 6S RNA is a widespread regula-tor of eubacterial RNA polymerase that resembles an open promoter, RNA, 11, 774–784.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Hnilicova, J., Jirat Matejckova, J., Sikova, M., Pospisil, J., Halada, P., Panek, J., and Krasny, L. (2014) Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria, Nucleic Acids Res., 42, 11763–11776.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Salina, E. G., Waddell, S. J., Hoffmann, N., Rosenkrands, I., Butcher, P. D., and Kaprelyants, A. S. (2014) Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states, Open Biol., 4, doi: 10.1098/rsob.140106.Google Scholar
  129. 129.
    Houghton, J., Cortes, T., Schubert, O., Rose, G., Rodgers, A., De Ste Croix, M., Aebersold, R., Young, D. B., and Arnvig, K. B. (2013) A small RNA encoded in the Rv2660c locus of Mycobacterium tuberculosis is induced during starvation and infection, PLoS One, 8, e80047.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Uplekar, S., Rougemont, J., Cole, S. T., and Sala, C. (2013) High resolution transcriptome and genome wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis, Nucleic Acids Res., 41, 961–977.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ignatov, D. B., Timoshina O. Yu., Logunova, N. N., Skvortsov, T. A., and Azhikina, T. L. (2014) Expression of Mycobacterium tuberculosis small RNA in mice models of tuberculosis, Bioorg. Khim., 40, 253–256.PubMedGoogle Scholar
  132. 132.
    Beisel, C. L., and Storz, G. (2011) The base pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli, Mol. Cell, 41, 286–297.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Storz, G., Vogel, J., and Wassarman, K. M. (2011) Regulation by small RNAs in bacteria: expanding fron-tiers, Mol. Cell, 43, 880–891.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • T. L. Azhikina
    • 1
    Email author
  • D. V. Ignatov
    • 1
  • E. G. Salina
    • 2
  • M. V. Fursov
    • 2
  • A. S. Kaprelyants
    • 2
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”Russian Academy of SciencesMoscowRussia

Personalised recommendations