Biochemistry (Moscow)

, Volume 80, Issue 12, pp 1629–1631 | Cite as

Thymic involution in ontogenesis: Role in aging program

  • G. A. Shilovsky
  • B. A. Feniouk
  • V. P. Skulachev
Discussions

Abstract

In most mammals, involution of the thymus occurs with aging. In this issue of Biochemistry (Moscow) devoted to phenoptosis, A. V. Khalyavkin considered involution of a thymus as an example of the program of development and further–of proliferation control and prevention of tumor growth. However, in animals devoid of a thymus (e.g. naked mice), stimulation of carcinogenesis, but not its prevention was observed. In this report, we focus on the involution of the thymus as a manifestation of the aging program (slow phenoptosis). We also consider methods of reversal/arrest of this program at different levels of organization of life (cell, tissue, and organism) including surgical manipulations, hormonal effects, genetic techniques, as well as the use of conventional and mitochondria-targeted antioxidants. We conclude that programmed aging (at least on the model of age-dependent thymic atrophy) can be inhibited.

Keywords

aging senescence thymic involution phenoptosis anti-aging medicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodey, B., Bodey, B., Jr., Siegel, S. E., and Kaiser, H. E. (1997. Involution of the mammalian thymus, one of the leading regulators of aging, In Vivo, 11, 421–440.PubMedGoogle Scholar
  2. 2.
    Khalyavkin, A. V., and Krutko, V. N. (2015) Early thymus involution–manifestation of the aging program or the program of development? Biochemistry (Moscow), 80, 16221625.Google Scholar
  3. 3.
    Makinodan, T., and Yunis, E. (1996) Immunology and Aging [Russian translation], Mir, Moscow.Google Scholar
  4. 4.
    Dominguez-Gerpe, L., and Rey-Meindez, M. (2003. Evolution of the thymus size in response to physiological and random events throughout life, Microsc. Res. Tech., 62, 464–476.CrossRefPubMedGoogle Scholar
  5. 5.
    Zabrodin, V. A. (2002. Estimating the rate of thymic involution based on the level of entropy of its macroparameters, Vestnik Nov. Med. Tekhnol., 3, 102.Google Scholar
  6. 6.
    Zabrodin, V. A. (2003. Estimating the thymic asymmetry in adults based on correlation analysis of its macroparameters, Vestnik Nov. Med. Tekhnol., 1–2, 58–59.Google Scholar
  7. 7.
    Yarygin, A., and Melentiev, A. S. (2010) Manual on Gerontology and Geriatrics in 4 volumes [in Russian], Vol. 1, GEOTAR-Media, Moscow.Google Scholar
  8. 8.
    Berthiaume, F., Aparicio, C. L., Eungdamrong, J., and Yarmush, M. L. (1999. Ageand disease-related decline in immune function: an opportunity for “thymus-boosting” therapies, Tissue Eng., 5, 499–514.CrossRefPubMedGoogle Scholar
  9. 9.
    Kulikov, A. V., Novoselova, E. G., Korystov, Yu. N., Glushkova, O. V., Cherenkov, D. A., Smirnova, G. N., Arkhipova, L. V., and Kulikov, D. A. (2005. Age-related thymic involution: ways to decelerate, Usp. Gerontol., 17, 82–86.Google Scholar
  10. 10.
    Aspinall, R., and Andrew, D. (2000. Thymic involution in aging, J. Clin. Immunol., 20, 250–256.CrossRefPubMedGoogle Scholar
  11. 11.
    Aspinall, R., and Mitchell, W. (2008. Reversal of age-associated thymic atrophy: treatments, delivery, and side effects, Exp. Gerontol., 43, 700–705.CrossRefPubMedGoogle Scholar
  12. 12.
    Montecino-Rodriquez, E., Min, H., and Dorshkind, K. (2005. Reevaluating current models of thymic involution, Semin. Immunol., 17, 356–361.CrossRefPubMedGoogle Scholar
  13. 13.
    Aw, D., Silva, A. B., Maddick, M., Von Zglinicki, T., and Palmer, D. B. (2008. Architectural changes in the thymus of aging mice, Aging Cell, 7, 158–167.CrossRefPubMedGoogle Scholar
  14. 14.
    Kiseleva, E. P. (2004. Mechanisms of thymic involution during tumor growth, Usp. Sovrem. Biol., 124, 589–601.Google Scholar
  15. 15.
    Leposavic, G., and Perisic, M. (2008. Age-associated remodeling of thymopoiesis: role for gonadal hormones and catecholamines, Neuroimmunomodulation, 15, 290–322.CrossRefPubMedGoogle Scholar
  16. 16.
    Fitzpatrick, F. T., Kendall, M. D., Wheeler, M. J., Adcock, I. M., and Greenstein, B. D. (1985. Reappearance of thymus of ageing rats after orchidectomy, J. Endocrinol., 106, 17–19.CrossRefGoogle Scholar
  17. 17.
    Hassman, R., Weetman, A. P., Gunn, C., Stringer, B. M., Wynford-Thomas, D., Hall, R., and McGregor, A. M. (1985. The effects of hyperthyroidism on experimental autoimmune thyroiditis in the rat, Endocrinology, 116, 1253–1258.CrossRefPubMedGoogle Scholar
  18. 18.
    Yacoub, A., Gaitonde, D. Y., and Wood, J. C. (2009. Thymic hyperplasia and Graves’ disease, Endocrin. Pract., 15, 534–539.CrossRefGoogle Scholar
  19. 19.
    Greenstein, B. D., Fitzpatrick, F. T., Kendall, M. D., and Wheeler, M. J. (1987. Regeneration of the thymus in old male rats treated with a stable analogue of LHRH, J. Endocrinol., 112, 345–350.CrossRefPubMedGoogle Scholar
  20. 20.
    Bredenkamp, N., Nowell, C. S., and Blackburn, C. C. (2014. Regeneration of the aged thymus by a single transcription factor, Development, 141, 1627–1637.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kolayeva, S. G., Novoselova, E. G., Amerkhanov, Z. G., Kulikov, A. V., and Ivkov, V. G. (2003. Annuals thymic involution and regeneration in hibernating animals and perspectives of its studies in gerontology and stem cell proliferation, Tsitologiya, 45, 628–634.Google Scholar
  22. 22.
    Khavinson, V. Kh., Linkova, N. S., Polyakova, V. O., Dudnov, A. V., and Kvetnoy, I. M. (2011. Age-dependent dynamics of differentiation of human immune cells, Byul. Eksp. Biol. Med., 151, 569–572.Google Scholar
  23. 23.
    Ashapkin, V. V., Linkova, N. S., Khavinson, V. Kh., and Vanyushin, B. F. (2015. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells, Biochemistry (Moscow), 80, 310–322.CrossRefGoogle Scholar
  24. 24.
    Zaia, A., and Piantanelli, L. (2000. Insulin receptors in mouse brain: reversibility of age-related impairments by a thymic extract, J. Am. Aging Assoc., 23, 133–139.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Duszczyszyn, D. A., Williams, J. L., Mason, H., Lapierre, Y., Antel, J., and Haegert, D. G. (2010. Thymic involution and proliferative T-cell responses in multiple sclerosis, J. Neuroimmunol., 221, 73–80.CrossRefPubMedGoogle Scholar
  26. 26.
    Kohler, S., and Thiel, A. (2009. Life after the thymus: CD31+ and CD31-human naive CD4+ T-cell subsets, Blood, 113, 769–774.CrossRefPubMedGoogle Scholar
  27. 27.
    Babaeva, A. G., and Zuev, V. A. (2007. Phenomenon of the transfer of aging signs to young mice by spleen lymphoid cells from old syngeneic donors, Byul. Eksp. Biol. Med., 7, 100–102.Google Scholar
  28. 28.
    Bullough, W. S. (1971. Ageing of mammals, Nature, 229, 608–610.CrossRefPubMedGoogle Scholar
  29. 29.
    Griffith, A. V., Venables, T., Shi, J., Farr, A., Van Remmen, H., Szweda, L., Fallahi, M., Rabinovitch, P., and Petrie, H. T. (2015. Metabolic damage and premature thymus aging caused by stromal catalase deficiency, Cell Rep., 12, 1071–1079.CrossRefPubMedGoogle Scholar
  30. 30.
    Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009. Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats, Aging (Albany NY), 1, 389–401.Google Scholar
  31. 31.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009. An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.CrossRefPubMedGoogle Scholar
  32. 32.
    Skulachev, M. V., and Skulachev, V. P. (2014. New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.CrossRefGoogle Scholar
  33. 33.
    Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015. Aging as an evolvability-increasing program, which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. A. Shilovsky
    • 1
  • B. A. Feniouk
    • 1
  • V. P. Skulachev
    • 1
  1. 1.Lomonosov Moscow State UniversityBelozersky Institute of Physico-Chemical BiologyMoscowRussia

Personalised recommendations