Biochemistry (Moscow)

, Volume 80, Issue 12, pp 1606–1613 | Cite as

Influence of 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on oxidative status in rats with protamine sulfate-induced hyperglycemia

  • Ya. G. Voronkova
  • T. N. PopovaEmail author
  • A. A. Agarkov
  • M. V. Skulachev


An influence of 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on oxidative status and activity of some antioxidant enzymes in the liver and blood serum from rats was examined during experimental hyperglycemia developed after injecting protamine sulfate. It was found that SkQ1 lowered glycemic level in rats treated with protamine sulfate. Moreover, it was also accompanied by restoration of the normal range of biochemiluminescence parameters indicating the rate of ongoing free radical processes, magnitude of primary products of lipid peroxidation such as diene conjugates, activity of aconitate hydratase, and level of citrate in rat liver and blood. Hence, it was demonstrated that activity of superoxide dismutase and catalase, increasing during hyperglycemia, was decreased after administering SkQ1. This might be related to the ability of SkQ1 to normalize free-radical homeostasis imbalanced during hyperglycemia.


hyperglycemia SkQ1 free radical oxidation biochemiluminescence superoxide dismutase catalase aconitate hydratase citrate 





lipid peroxidation


reactive oxygen species




superoxide dismutase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chazova, V. B., and Mychka, V. B. (2003. Metabolic syndrome, type 2 diabetes mellitus and arterial hypertension, Serdtse, 3, 32–38.Google Scholar
  2. 2.
    Bayzhanova, Zh. Zh., Ignatova, T. M., Severova, M. M., and Burnevich, E. Z. (2012. Hepatic steatosis and insulin resistance during chronic hepatitis C virus infection, Farmateka, 7, 26–29.Google Scholar
  3. 3.
    Von Frerichs, Fr. Th. (1884) Ueber den Diabetes, Berlin, 272.Google Scholar
  4. 4.
    Balabolkin, M. I., Kreminskaya, V. M., and Klebanova, E. M. (2005. A role of oxidative stress in pathogenesis of diabetic neuropathy and opportunity for its correction by alipoic acid-containing drugs, Probl. Endokrinol., 51, 22–33.Google Scholar
  5. 5.
    De Haan, J. B., Stefanovic, N., and Nikolic-Paterson, D. (2005. Kidney expression of glutathione peroxidase-1 is not protective against streptozotocin-induced diabetic nephropathy, Am. J. Physiol. Renal. Physiol., 289, 544–551.CrossRefGoogle Scholar
  6. 6.
    Martinov, M. V. (2010. The logic of the hepatic methionine metabolic cycle, Biochim. Biophys. Acta, 1, 89–96.CrossRefGoogle Scholar
  7. 7.
    Kondrat’ eva, E. I., and Kosyankova, T. V. (2002. Nitric oxide synthase genes in pathogenesis of diabetes mellitus and its complications, Probl. Endokrinol., 2, 33–37.Google Scholar
  8. 8.
    Voskresensky, O. N. (2002. Antioxidant system, ontogenesis, and aging, Vopr. Med. Khim., 1, 14–27.Google Scholar
  9. 9.
    Alonso-Magdalena, P., Ropero, A. B., Soriano, S., Quesada, I., and Nadal, A. (2010. Bisphenol-A: a new diabetogenic factor? Hormones (Athens), 9, 118–126.Google Scholar
  10. 10.
    Krotz, F. (2009. NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment, Blood, 100, 917–924.CrossRefGoogle Scholar
  11. 11.
    Skulachev, V. P. (2000) Oxygen and Events of Programmed Death [in Russian], IBKh RAMN, Moscow.Google Scholar
  12. 12.
    Beinert, H. (1986. Iron-sulfur clusters: agents of electron transfer and storage, and direct participants in enzymic reactions, Biochem. Soc. Trans., 14, 527–533.CrossRefPubMedGoogle Scholar
  13. 13.
    Eberly, D., Clanke, R., and Kaplowitz, N. (1981. Rapid oxidation in vitro of endogenous and exogenous glutathione in bile of rats, J. Biol. Chem., 256, 2115–2117.Google Scholar
  14. 14.
    Severin, E. S. (2008) Biochemistry [in Russian], GEOTARMedia, Moscow.Google Scholar
  15. 15.
    Zanozina, O. V., Borovkov, N. N., and Shcherbatyuk, T. G. (2010. Free radical oxidation during type 2 diabetes mellitus: source of generation comprising pathogenetic mechanisms of toxicity, Sovr. Tekhnol. Med., 3, 104–112.Google Scholar
  16. 16.
    Kazimirko, V. K., Mal’tsev, V. I., Butylin, V. Yu., and Gorobets, N. I. (2004) Free Radical Oxidation and Antioxidant System [in Russian], Morion, Kiev.Google Scholar
  17. 17.
    Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2009. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes, Endocrin. Rev., 23, 599–622.CrossRefGoogle Scholar
  18. 18.
    Lin, K. T., Xue, J. Y., and Nomen, M. J. (1995. Peroxynitrite-induced apoptosis in HL-60 cells, Biol. Chem., 270, 16487–16490.CrossRefGoogle Scholar
  19. 19.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 12731287.CrossRefGoogle Scholar
  20. 20.
    Ul’yanov, A. M., and Tarasov, Yu. A. (2000. Pancreatic insular apparatus in animals under chronic heparin deficiency, Vopr. Med. Khim., 2, 149–154.Google Scholar
  21. 21.
    Kudryashov, B. A., Pytel’, Yu. A., Lyapina, L. A., and Baskakova, G. M. (1981. Insulin–heparin complex and its physiological properties, Vopr. Med. Khim., 27, 547–552.Google Scholar
  22. 22.
    Ul’yanov, A. M., Shapiro, F. B., and Lyapina, L. A. (1989. Hypoglycemic activity of insulin–heparin complex and conditions for its manifestation, Patol. Fiziol. Eksp. Ter., 1, 54–56.Google Scholar
  23. 23.
    Kudryashov, B. A., Ul’yanov, A. M., and Tarasov, Yu. A. (1989. Protamine sulfate enhances diabetogenic effect of alloxan, Vopr. Med. Khim., 35, 128–131.Google Scholar
  24. 24.
    Kudrjashov, B. A., Shapiro, F. B., and Ulyanov, A. M. (1987. Role of heparin of realization of hypoglycaemic action of insulin, Acta Physiol. Hung., 69, 197–202.PubMedGoogle Scholar
  25. 25.
    Ul’yanov, A. M., Shapiro, F. B., and Bazaz’yan, G. G. (1987. Lowered sensitivity to hypoglycemic effects of insulin in animals with reduced concentration of blood heparin, Byul. Eksp. Biol. Med., 103, 522–524.Google Scholar
  26. 26.
    Stal’naya, I. D. (1977) A Method for Detecting Diene Conjugates of Unsaturated Higher Fatty Acids. Modern Methods in Biochemistry [in Russian], Meditsina, Moscow, pp. 63–64.Google Scholar
  27. 27.
    Buzlama, B. C., Retskiy, M. I., Meshcheryakov, N. P., and Rogacheva, T. E. (1997) A Textbook on Investigating Lipid Peroxidation Processes and Body Antioxidant Defense System in Animals [in Russian], Voronezh.Google Scholar
  28. 28.
    Afanas’ev, V. G., Zaytsev, V. S., and Vol’fson, T. I. (1973. To a micromethod of detecting citric acid in the blood serum by photoelectrocolorimeter, Lab. Delo, 4, 115–116.Google Scholar
  29. 29.
    Matyushina, B. N., Loginov, A. S., and Tkachev, V. D. (1991. Detection of superoxide dismutase activity in samples of needle liver biopsy during chronic hepatic injuries, Lab. Delo, 7, 16–19.Google Scholar
  30. 30.
    Korolyuk, M. A., Ivanova, L. I., and Mayorova, I. T. (1988. A method for detecting catalase activity, Lab. Delo, 1, 16–19.Google Scholar
  31. 31.
    Lloyd, E., and Lederman, U. (1990) Guidelines on Applied Statistics [in Russian], Finansy i Statistika, Moscow.Google Scholar
  32. 32.
    Chistyakov, V. A., Prazdnova, E. V., Gutnikova, L. V., Sazykina, M. A., and Sazykin, I. S. (2012. Superoxide scavenging activity of plastoquinone derivative 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1), Biochemistry (Moscow), 77, 776–778.CrossRefGoogle Scholar
  33. 33.
    Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Yu., Chernyak, B. V., and Popova, E. N. (2014. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging, 6, 661–674.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008. Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments, J. Membr. Biol., 222, 141–149.CrossRefPubMedGoogle Scholar
  35. 35.
    Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2009. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes, Endocrin. Rev., 23, 599–622.CrossRefGoogle Scholar
  36. 36.
    Murakami, K., and Yoshino, M. (1997. Inactivation of aconitase in yeast exposed to oxidative stress, Biochem. Mol. Biol. Int., 41, 481–486.PubMedGoogle Scholar
  37. 37.
    Gardner, P. R., Nguyen, D. M., and White, C. W. (1994. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs, Proc. Natl. Acad. Sci. USA, 91, 12248–12252.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Turpaev, K. T. (2002. Reactive oxygen intermediates and gene expression, Biochemistry (Moscow), 67, 281–292.CrossRefGoogle Scholar
  39. 39.
    Dubinina, E. E. (1995. Characteristics of extracellular superoxide dismutase, Vopr. Med. Khim., 41, 8–12.PubMedGoogle Scholar
  40. 40.
    Popova, T. N., Agarkov, A. A., and Verevkin, A. N. (2013. Intensity of free radical processes in rat liver during type 2 diabetes mellitus and in response to administered epifamine, Acta Naturae, 5, 129–134.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Ya. G. Voronkova
    • 1
  • T. N. Popova
    • 1
    Email author
  • A. A. Agarkov
    • 1
  • M. V. Skulachev
    • 2
  1. 1.Department of Medical Biochemistry and MicrobiologyVoronezh State UniversityVoronezhRussia
  2. 2.Lomonosov Moscow State UniversityInstitute of MitoengineeringMoscowRussia

Personalised recommendations