Biochemistry (Moscow)

, Volume 80, Issue 12, pp 1598–1605 | Cite as

Influence of SkQ1 on expression of Nrf2 gene, ARE-controlled genes of antioxidant enzymes and their activity in rat blood leukocytes under oxidative stress

  • V. V. Vnukov
  • O. I. Gutsenko
  • N. P. MilutinaEmail author
  • I. V. Kornienko
  • A. A. Ananyan
  • A. O. Danilenko
  • S. B. Panina
  • A. A. Plotnikov
  • M. S. Makarenko


The study demonstrated that oxidative stress induced by hyperoxia (0.5 MPa for 90 min) resulted in reduction of mRNA levels of transcription factor Nrf2 and Nrf2-induced genes encoding antioxidant enzymes (SOD1, CAT, GPx4) in peripheral blood leukocytes of rats. The changes in gene expression profiles under hyperoxia were accompanied by disbalance of activity of antioxidant enzymes in the leukocytes, namely activation of superoxide dismutase and inhibition of catalase, glutathione peroxidase, and glutathione-S-transferase. Pretreatment of rats with SkQ1 (50 nmol/kg for five days) significantly increased mRNA levels of transcription factor Nrf2 and Nrf2-induced genes encoding antioxidant enzymes SOD2 and GPx4 and normalized the transcriptional activity of the SOD1 and CAT genes in the leukocytes in hyperoxia-induced oxidative stress. At the same time, the activity of catalase and glutathione peroxidase was increased, and the activity of superoxide dismutase and glutathione-S-transferase returned to the control level. It is hypothesized that protective effect of SkQ1 in hyperoxia-induced oxidative stress can be realized via a direct antioxidant property and the stimulation of the Keap1/Nrf2 redox-sensitive signaling system.


mitochondria-targeted antioxidant leukocytes gene expression antioxidant enzymes hyperoxia 



antioxidant response element


hyperbaric oxygen (therapy)


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., and Telser, J. (2007. Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 39, 44–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Sies, H. (2015. Oxidative stress: a concept in redox biology and medicine, Redox Biol., 4, 180–183.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Zhivotovsky, B., and Orrenius, S. (2010. Cell death mechanisms: cross-talk and role in disease, Exper. Cell Res., 316, 1374–1383.CrossRefGoogle Scholar
  4. 4.
    Ay, H., Topal, T., Ozler, M., Uysal, B., Korkmaz, A., Oter, S., Ogur, R., and Dundar, K. (2007. Persistence of hyperbaric oxygen-induced oxidative effects after exposure in rat brain cortex tissue, Life Sci., 80, 2025–2029.CrossRefPubMedGoogle Scholar
  5. 5.
    Berkelhamer, S. K., Kim, G. A., Radder, J. E., Wedgwood, S., Czech, L., Steinhorn, R. H., and Schumacker, P. T. (2013. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung, Free Radic. Biol. Med., 61, 51–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Mathieu, D. (2009) Handbook of Hyperbaric Medicine [Russian translation], BINOM, Laboratoriya Znanii, Moscow.Google Scholar
  7. 7.
    Das, K. C. (2013. Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria, PLoS One, 8, e73358.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Resseguie, E. A., Staversky, R. J., Brookes, P. S., and O’Reilly, M. A. (2015. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction, Redox Biol., 5, 176–185.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Skulachev, V. P. (2007. A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), 72, 1385–1396.CrossRefGoogle Scholar
  10. 10.
    Plotnikov, E. Y., Silachev, D. N., Chupyrkina, A. A., Danshina, M. I., Jankauskas, S. S., Morosanova, M. A., Stelmashook, E. V., Vasileva, A. K., Goryacheva, E. S., Pirogov, Y. A., Isaev, N. K., and Zorov, D. B. (2010. Newgeneration Skulachev ions exhibiting nephroprotective and neuroprotective properties, Biochemistry (Moscow), 75, 145–150.CrossRefGoogle Scholar
  11. 11.
    Niture, S. K., Khatri, R., and Jaiswal, A. K. (2014. Regulation of Nrf2–an update, Free Radic. Biol. Med., 66, 34–36.CrossRefGoogle Scholar
  12. 12.
    Forman, H. J., Davies, K. J. A., and Ursini, F. (2014. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis free radical scavenging in vivo, Free Radic. Biol. Med., 66, 24–35.CrossRefPubMedGoogle Scholar
  13. 13.
    Vnukov, V. V., Gutsenko, O. I., Milutina, N. P., Ananyan, A. A., Danilenko, A. O., Panina, S. B., and Kornienko, I. V. (2015. Influence of SkQ1 on expression of Nrf2 transcription factor gene, ARE-controlled genes of antioxidant enzymes, and their activity in rat blood leukocytes, Biochemistry (Moscow), 80, 586–591.CrossRefGoogle Scholar
  14. 14.
    Lukash, A. I., Vnukov, V. V., Ananyan, A. A., Milutina, N. P., and Kvasha, P. N. (1996) Metal-Containing Substances of Blood Plasma in Hyperbaric Oxygenation (Experimental and Clinical Aspects) [in Russian], RSU Publishers, Rostov-onDon.Google Scholar
  15. 15.
    Boyum, A. (1968. Separation of leukocytes from blood and bone marrow, Scand. J. Clin. Lab. Invest. Suppl., 97, 77–89.PubMedGoogle Scholar
  16. 16.
    Sirota, N. V. (1999. New approach in studies of adrenalin autoxidation and its use in measurements of superoxide dismutase activity, Vopr. Med. Khim., 3, 14–15.Google Scholar
  17. 17.
    Korolyuk, M. A., Ivanova, L. I., Maiorova, I. G., and Tokarev, V. E. (1988. Method for measurements of catalase activity, Lab. Delo, 1, 16–19.Google Scholar
  18. 18.
    Moin, V. M. (1986. Simple and specific approach for determination of glutathione peroxidase activity in erythrocytes, Lab. Delo, 12, 724–727.PubMedGoogle Scholar
  19. 19.
    Habig, W. H., Pabst, M. J., and Jacoby, W. B. (1974. Glutathione-S-transferase: the first step in mercapturic acid formation, J. Biol. Chem. 249, 7130–7139.PubMedGoogle Scholar
  20. 20.
    Saidov, M. Z., and Pinegin, B. V. (1991. Spectrophotometric method of myeloperoxidase assay in phagocytic cells, Lab. Delo, 3, 56–59.PubMedGoogle Scholar
  21. 21.
    Dluzhevskaya, T. S., Pogorelova, T. N., and Afonin, A. A. (1989. NADPH-oxidase activity in determination of newborn health status, Pediatriya, 3, 44–47.Google Scholar
  22. 22.
    Cho, H.-Y., Jedlicka, A. E., Reddy, S. P., Kensler, T. W., Yamamoto, M., Zhang, L. Y., and Kleeberger, S. R. (2002. Role of NRF2 in protection against hyperoxic lung injury in mice, Am. J. Respir. Cell Mol. Biol., 26, 175–182.CrossRefPubMedGoogle Scholar
  23. 23.
    Cho, H.-Y., Reddy, S. P., De Biase, A., Yamamoto, M., and Kleeberger, S. R. (2005. Gene expression profiling of NRF2-mediated protection against oxidative injury, Free Radic. Biol. Med., 38, 325–343.CrossRefPubMedGoogle Scholar
  24. 24.
    Pendyala, S., and Natarajan, V. (2010. Redox regulation of Nox proteins, Respir. Physiol. Neurobiol., 174, 265–271.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Pendyala, S., Gorshkova, I. A., Usatyuk, P. V., He, D., Pennathur, A., Lambeth, J. D., Thannickal, V. J., and Natarajan, V. (2009. Role of Nox4 and Nox2 in hyperoxiainduced reactive oxygen species generation and migration of human lung endothelial cells, Antioxid. Redox. Signal., 11, 747–764.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Kaspar, J. W., Niture, S. K., and Jaiswal, A. K. (2009. Nrf2: INrf2 (Keap1) signaling in oxidative stress, Free Radic. Biol. Med., 47, 1304–1309.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Ma, Q. (2013. Role of Nrf2 in oxidative stress and toxicity, Annu. Rev. Pharmacol. Toxicol., 53, 401–426.CrossRefPubMedGoogle Scholar
  28. 28.
    Hayes, J. D., and Dinkova-Kostova, A. T. (2014. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism, Trends Biochem. Sci., 39, 199–216.CrossRefPubMedGoogle Scholar
  29. 29.
    Taguchi, K., Motohashi, H., and Yamamoto, M. (2011. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution, Genes Cells, 16, 123–140.CrossRefPubMedGoogle Scholar
  30. 30.
    Lo, S.-C., and Hannink, M. (2008. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria, Exp. Cell Res., 14, 1789–1803.CrossRefGoogle Scholar
  31. 31.
    Dinkova-Kostova, A. T., and Abramov, A. Y. (2015) The emerging role of Nrf2 in mitochondrial function, Free Radic. Biol. Med., doi: 10.1016/j.freeradbiomed.2015.04.036.Google Scholar
  32. 32.
    Ma, Q. (2010. Transcriptional responses to oxidative stress: pathological and toxicological implications, Pharmacol. Ther., 125, 376–393.CrossRefPubMedGoogle Scholar
  33. 33.
    McGrath-Morrow, S., Lauer, T., Yee, M., Neptune, E., Podowski, M., Thimmulappa, R. K., O’Reilly, M., and Biswal, S. (2009. Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia, Am. J. Physiol. Lung Cell. Mol. Physiol., 296, 565–573.CrossRefGoogle Scholar
  34. 34.
    Kwak, M.-K., Itoh, K., Yamamoto, M., and Kensler, T. W. (2002. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter, Mol. Cell Biol., 22, 2883–2892.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Bryan, H. K., Olayanju, A., Goldring, C. E., and Park, B. K. (2013. The Nrf2 cell defense pathway: Keap1-dependent and -independent mechanisms of regulation, Biochem. Pharmacol., 85, 705–717.CrossRefPubMedGoogle Scholar
  36. 36.
    He, X., and Ma, Q. (2009. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECHassociated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation, Mol. Pharmacol., 76, 1265–1278.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Vnukov, V. V., Milutina, N. P., Ananyan, A. A., Danilenko, A. O., Gutsenko, O. I., and Verbitsky, E. V. (2013. The influence of plastoquinone cation derivative–10(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1)–on the apoptosis intensity and structural state of rat lymphocyte membranes under oxidative stress induced by the hyperbaric oxygenation, Vestnik SSC RAN, 9, 78–86.Google Scholar
  38. 38.
    Takaya, K., Suzuki, T., Motohashi, H., Onodera, K., Satomi, S., Kensler, T. W., and Yamamoto, M. (2012. Validation of the multiple sensor mechanism of the Keap1–Nrf2 system, Free Radic. Biol. Med., 53, 817–827.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Vnukov
    • 1
  • O. I. Gutsenko
    • 1
  • N. P. Milutina
    • 1
    Email author
  • I. V. Kornienko
    • 1
  • A. A. Ananyan
    • 1
  • A. O. Danilenko
    • 1
  • S. B. Panina
    • 1
  • A. A. Plotnikov
    • 1
  • M. S. Makarenko
    • 1
  1. 1.Department of Biochemistry and MicrobiologySouthern Federal University, Academy of Biology and BiotechnologyRostov-on-DonRussia

Personalised recommendations