Biochemistry (Moscow)

, Volume 80, Issue 12, pp 1578–1581 | Cite as

Alzheimer’s disease: An exacerbation of senile phenoptosis

  • N. K. IsaevEmail author
  • E. V. Stelmashook
  • E. E. Genrikhs
  • M. V. Oborina
  • M. R. Kapkaeva
  • V. P. Skulachev


Alzheimer’s disease is characterized by progressive memory loss and cognitive decline accompanied by degeneration of neuronal synapses, massive loss of neurons in the brain, eventually resulting in complete degradation of personality and death. Currently, the cause of the disease is not fully understood, but it is believed that the person’s age is the major risk factor for development of Alzheimer’s disease. People who have survived after cerebral stroke or traumatic brain injury have substantially increased risk of developing Alzheimer’s disease. Social exclusion, low social activity, physical inactivity, poor mental performance, and low level of education are among risk factors for development of this neurodegenerative disease, which is consistent with the concept of phenoptosis (Skulachev, V. P., et al. (1999) Biochemistry (Moscow), 64, 1418-1426; Skulachev, M. V., and Skulachev, V. P. (2014) Biochemistry (Moscow), 79, 977-993) stating that rate of aging is related to psychological and social aspects in human behavior. Here we assumed that Alzheimer’s disease might be considered as an exacerbation of senile phenoptosis. If so, then development of this disease could be slowed using mitochondria-targeted antioxidants due to the accumulated data demonstrating a link between mitochondrial dysfunction and oxidative stress both with normal aging and Alzheimer’s disease.


phenoptosis Alzheimer’s disease aging brain mitochondria-targeted antioxidants SkQ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, D. E., Rapp, P. R., McKay, H. M., Roberts, J. A., and Tuszynski, M. H. (2004) Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons, J. Neurosci., 24, 43734381.Google Scholar
  2. 2.
    Freeman, S. H., Kandel, R., Cruz, L., Rozkalne, A., Newell, K., Frosch, M. P., Hedley-Whyte, E. T., Locascio, J. J., Lipsitz, L. A., and Hyman, B. T. (2008. Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer’s disease, J. Neuropathol. Exp. Neurol., 67, 1205–1212.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Fjell, A. M., and Walhovd, K. B. (2010. Structural brain changes in aging: courses, causes, and cognitive consequences, Rev. Neurosci., 21, 187–221.PubMedGoogle Scholar
  4. 4.
    Isaev, N. K., Stelmashook, E. V., Stelmashook, N. N., Sharonova, I. N., and Skrebitskiy, V. G. (2013. Aging of the brain and SkQ mitochondria-targeted antioxidants, Biochemistry (Moscow), 78, 295–300.CrossRefGoogle Scholar
  5. 5.
    Peters, A., Sethares, C., and Moss, M. B. (2010. How the primate fornix is affected by age, J. Comp. Neurol., 518, 3962–3980.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Bertoni-Freddari, C., Fattoretti, P., Casoli, T., Caselli, U., and Meier-Ruge, W. (1996. Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type, Anal. Quant. Cytol. Histol., 18, 209–213.PubMedGoogle Scholar
  7. 7.
    Kerbler, G. M., Fripp, J., Rowe, C. C., Villemagne, V. L., Salvado, O., Rose, S., and Coulson, E. J. (2014. Alzheimer’s disease neuroimaging initiative. Basal forebrain atrophy correlates with amyloid ß burden in Alzheimer’s disease, Neuroimage Clin., 7, 105–113.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Grothe, M., Heinsen, H., and Teipel, S. (2012. Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer’s disease, Neurobiol. Aging, 34, 1210–1220.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Bishop, N. A., Lu, T., and Yankner, B. A. (2010. Neural mechanisms of ageing and cognitive decline, Nature, 464, 529–535.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Schmitt, K., Grimm, A., Kazmierczak, A., Strosznajder, J. B., Gotz, J., and Eckert, A. (2012. Insights into mitochondrial dysfunction: aging, amyloid-ß, and t-A deleterious trio, Antioxid. Redox Signal., 16, 1456–1466.CrossRefPubMedGoogle Scholar
  11. 11.
    Stelmashook, E. V., Isaev, N. K., Genrikhs, E. E., Amel’kina, G. A., Khaspekov, L. G., Skrebitskiy, V. G., and Illarioshkin, S. N. (2014. A role of zinc and copper in pathogenesis of Alzheimer’s and Parkinson’s disease, Biochemistry (Moscow), 79, 391–396.CrossRefGoogle Scholar
  12. 12.
    Xekardaki, A., Kovari, E., Gold, G., Papadimitropoulou, A., Giacobini, E., Herrmann, F., Giannakopoulos, P., and Bouras, C. (2015. Neuropathological changes in aging brain, Adv. Exp. Med. Biol., 821, 11–17.CrossRefPubMedGoogle Scholar
  13. 13.
    Tomic, J. L., Pensalfini, A., Head, E., and Glabe, C. G. (2009. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction, Neurobiol. Dis., 35, 352–358.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    McGeer, P. L., and McGeer, E. G. (2013. The amyloid cascade-inflammatory hypothesis of Alzheimer’s disease: implications for therapy, Acta Neuropathol., 126, 479–497.CrossRefPubMedGoogle Scholar
  15. 15.
    Kalyn, Ya. B., and Bratsun, A. L. (1999) Distribution and risk factors in developing Alzheimer-like dementia, in Alzheimer’s Disease and Aging: from Neurobiology to Therapy: Materials of Second Russian Conference [in Russian], Moscow, pp. 52–58.Google Scholar
  16. 16.
    Shively, S., Scher, A. I., Perl, D. P., and Diaz-Arrastia, R. (2012. Dementia resulting from traumatic brain injury: what is the pathology? Arch. Neurol., 69, 1245–1251.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Walker, K. R., Kang, E. L., Whalen, M. J., Shen, Y., and Tesco, G. (2012. Depletion of GGA1 and GGA3 mediates postinjury elevation of BACE1, J. Neurosci., 32, 10423–10437.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Katzman, R. (1993. Clinical and epidemiological aspects of Alzheimer’s disease, Clin. Neurosci., 1, 165–170.Google Scholar
  19. 19.
    Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2014. Receptor-mediated regulation of senile phenoptosis, Biochemistry (Moscow), 79, 994–1003.CrossRefGoogle Scholar
  20. 20.
    Skulachev, V. P. (1999. Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  21. 21.
    Skulachev, V. P. (2012. What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.CrossRefGoogle Scholar
  22. 22.
    Skulachev, M. V., and Skulachev, V. P. (2014. New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.CrossRefGoogle Scholar
  23. 23.
    Skulachev, V. P. (2012. Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases, J. Alzheimer’s Dis., 28, 283–289.Google Scholar
  24. 24.
    Persson, T., Popescu, B. O., and Cedazo-Minguez, A. (2014) Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid. Med. Cell. Longev., doi: 10.1155/2014/427318.Google Scholar
  25. 25.
    Di Domenico, F., Barone, E., Perluigi, M., and Butterfield, D. A. (2015. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants, Expert Rev. Neurother., 15, 19–40.CrossRefPubMedGoogle Scholar
  26. 26.
    Stefanova, N. A., Fursova, A. Zh., and Kolosova, N. G. (2010. Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats, J. Alzheimer’s Dis., 21, 479–491.Google Scholar
  27. 27.
    Loshchenova, P. S., Sinitsyna, O. I., Fedoseeva, L. A., Stefanova, N. A., and Kolosova, N. G. (2015. Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats, Biochemistry (Moscow), 80, 596–603.CrossRefGoogle Scholar
  28. 28.
    Skulachev, M. V., and Skulachev, V. P. (2015) in Apoptosis and Beyond: the Many Ways Cells Die (Radosevich, J., ed.) Springer-Verlag, Berlin-Heidelberg, in press.Google Scholar
  29. 29.
    Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014. Alzheimer’s disease like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimer’s Dis., 38, 681–694.Google Scholar
  30. 30.
    Kapay, N. A., Isaev, N. K., Stelmashook, E. V., Popova, O. V., Zorov, D. B., Skrebitskiy, V. G., and Skulachev, V. P. (2011. In vivo injected mitochondria-targeted plastoquinone antioxidant SkQR1 prevents ß-amyloid-induced decay of long-term potentiation in rat hippocampal slices, Biochemistry (Moscow), 76, 1367–1370.CrossRefGoogle Scholar
  31. 31.
    Kapay, N. A., Popova, O. V., Isaev, N. K., Stelmashook, E. V., Kondratenko, R. V., Zorov, D. B., Skrebitsky, V. G., and Skulachev, V. P. (2013. Mitochondria-targeted plastoquinone antioxidant SkQ1 prevents amyloid-ß-induced impairment of long-term potentiation in rat hippocampal slices, J. Alzheimer’s Dis., 36, 377–383.Google Scholar
  32. 32.
    Genrikhs, E. E., Stelmashook, E. V., Popova, O. V., Kapay, N. A., Korshunova, G. A., Sumbatyan, N. V., Skrebitsky, V. G., Skulachev, V. P., and Isaev, N. K. (2015. Mitochondriatargeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-ß-induced impairment of long-term potentiation in rat hippocampal slices, J. Drug Target., 23, 347–352.CrossRefPubMedGoogle Scholar
  33. 33.
    Ma, T., Hoeffer, C. A., Wong, H., Massaad, C. A., Zhou, P., Iadecola, C., Murphy, M. P., Pautler, R. G., and Klann, E. (2011. Amyloid ß-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide, J. Neurosci., 31, 5589–5595.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    McManus, M. J., Murphy, M. P., and Franklin, J. L. (2011. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease, J. Neurosci., 31, 15703–15715.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Bouchard, J., and Villeda, S. A. (2015. Aging and brain rejuvenation as systemic events, J. Neurochem., 132, 5–19.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. K. Isaev
    • 1
    • 2
    Email author
  • E. V. Stelmashook
    • 2
  • E. E. Genrikhs
    • 2
  • M. V. Oborina
    • 2
  • M. R. Kapkaeva
    • 2
  • V. P. Skulachev
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Research Center of NeurologyMoscowRussia

Personalised recommendations