Biochemistry (Moscow)

, Volume 80, Issue 12, pp 1571–1577 | Cite as

DNA methylation, mitochondria, and programmed aging

  • L. A. Zinovkina
  • R. A. ZinovkinEmail author


DNA methylation is a key epigenetic process involved in the regulation of nuclear gene expression. Progress in the study of genomic DNA methylation led to the precise identification of methylation sites reflecting biological age of cells and tissues. However, the functional significance of mitochondrial DNA (mtDNA) methylation remains unknown. Growing evidence suggests that mtDNA methylation is linked to aging and oxidative stress. This mini-review summarizes information about the methylation of nuclear and mtDNA in mammals, indicating the connection of these processes to programmed aging.


epigenetics DNA methylation mitochondria aging 









mitochondrial DNA


mitochondrial reactive oxygen species


nuclear DNA


ten-eleven-translocation oxygenase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maresca, A., Zaffagnini, M., Caporali, L., Carelli, V., and Zanna, C. (2015) DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated? Front. Genet., 6, 90.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Kohli, R. M., and Zhang, Y. (2013. TET enzymes, TDG and the dynamics of DNA demethylation, Nature, 502, 472–479.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Arand, J., Spieler, D., Karius, T., Branco, M. R., Meilinger, D., Meissner, A., Jenuwein, T., Xu, G., Leonhardt, H., Wolf, V., and Walter, J. (2012. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases, PLoS Genet., 8, e1002750.Google Scholar
  4. 4.
    Guo, J. U., Su, Y., Shin, J. H., Shin, J., Li, H., Xie, B., Zhong, C., Hu, S., Le, T., Fan, G., Zhu, H., Chang, Q., Gao, Y., Ming, G. L., and Song, H. (2014. Distribution, recognition, and regulation of non-CpG methylation in the adult mammalian brain, Nat. Neurosci., 17, 215–222.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., and Bestor, T. H. (2001. Dnmt3L and the establishment of maternal genomic imprints, Science, 294, 2536–2539.CrossRefPubMedGoogle Scholar
  6. 6.
    Jeltsch, A., and Jurkowska, R. Z. (2014. New concepts in DNA methylation, Trends Biochem. Sci., 39, 310–318.CrossRefPubMedGoogle Scholar
  7. 7.
    Vanyushin, B. F., Kiryanov, G. I., Kudryashova, I. B., and Belozersky, A. N. (1971. DNA-methylase in loach embryos (Misgurnus fossilis), FEBS Lett., 15, 313–316.CrossRefPubMedGoogle Scholar
  8. 8.
    Vanyushin, B. F., and Kirnos, M. D. (1974. The nucleotide composition and pyrimidine clusters in DNA from beef heart mitochondria, FEBS Lett., 39, 195–199.CrossRefPubMedGoogle Scholar
  9. 9.
    Vanyushin, B. F., and Kirnos, M. D. (1977. The structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation), Mol. Cell. Biochem., 14, 31–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Kudriashova, I. B., Kirnos, M. D., and Vaniushin, B. F. (1976. DNA-methylase activities from animal mitochondria and nuclei: different specificity of DNA methylation, Biokhimiya, 41, 1968–1977.Google Scholar
  11. 11.
    Shmookler Reis, R. J., and Goldstein, S. (1983. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation, J. Biol. Chem., 258, 9078–9085.PubMedGoogle Scholar
  12. 12.
    Pollack, Y., Kasir, J., Shemer, R., Metzger, S., and Szyf, M. (1984. Methylation pattern of mouse mitochondrial DNA, Nucleic Acids Res., 12, 4811–4824.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G., and Taylor, S. M. (2011. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria, Proc. Natl. Acad. Sci. USA, 108, 3630–3635.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Ghosh, S., Sengupta, S., and Scaria, V. (2014. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria, Mitochondrion, 18, 58–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Bellizzi, D., D’ Aquila, P., Scafone, T., Giordano, M., Riso, V., Riccio, A., and Passarino, G. (2013. The control region of mitochondrial DNA shows an unusual CpG and nonCpG methylation pattern, DNA Res., 20, 537–547.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Agaronyan, K., Morozov, Y. I., Anikin, M., and Temiakov, D. (2015. Mitochondrial biology. Replication-transcription switch in human mitochondria, Science, 347, 548–551.CrossRefPubMedGoogle Scholar
  17. 17.
    Rebelo, A. P., Williams, S. L., and Moraes, C. T. (2009. In vivo methylation of mtDNA reveals the dynamics of protein–mtDNA interactions, Nucleic Acids Res., 37, 67016715.CrossRefGoogle Scholar
  18. 18.
    Ferreira, A., Serafim, T. L., Sardao, V. A., and CunhaOliveira, T. (2015. Role of mtDNA-related mitoepigenetic phenomena in cancer, Eur. J. Clin. Invest., 45 (Suppl. 1), 44–49.CrossRefPubMedGoogle Scholar
  19. 19.
    Nicholls, T. J., and Minczuk, M. (2014. In D-loop: 40 years of mitochondrial 7S DNA, Exp. Gerontol., 56, 175–181.CrossRefPubMedGoogle Scholar
  20. 20.
    Chestnut, B. A., Chang, Q., Price, A., Lesuisse, C., Wong, M., and Martin, L. J. (2011. Epigenetic regulation of motor neuron cell death through DNA methylation, J. Neurosci., 31, 16619–16636.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Minocherhomji, S., Tollefsbol, T. O., and Singh, K. K. (2012. Mitochondrial regulation of epigenetics and its role in human diseases, Epigenetics, 7, 326–334.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Iacobazzi, V., Castegna, A., Infantino, V., and Andria, G. (2013. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool, Mol. Genet. Metab., 110, 25–34.CrossRefPubMedGoogle Scholar
  23. 23.
    Byun, H.-M., Panni, T., Motta, V., Hou, L., Nordio, F., Apostoli, P., Bertazzi, P. A., and Baccarelli, A. A. (2013. Effects of airborne pollutants on mitochondrial DNA methylation, Part. Fibre Toxicol., 10, 18.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Sun, C., Reimers, L. L., and Burk, R. D. (2011. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer, Gynecol. Oncol., 121, 59–63.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Vanyushin, B. F., Nemirovsky, L. E., Klimenko, V. V., Vasiliev, V. K., and Belozersky, A. N. (1973. The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents, Gerontologia, 19, 138–152.CrossRefPubMedGoogle Scholar
  26. 26.
    Wilson, V. L., and Jones, P. A. (1983. DNA methylation decreases in aging but not in immortal cells, Science, 220, 1055–1057.CrossRefPubMedGoogle Scholar
  27. 27.
    Holliday, R. (1985. The significance of DNA methylation in cellular aging, Basic Life Sci., 35, 269–283.PubMedGoogle Scholar
  28. 28.
    Richardson, B. (2003. Impact of aging on DNA methylation, Ageing Res. Rev., 2, 245–261.CrossRefPubMedGoogle Scholar
  29. 29.
    Vanyushin, B. F. (2013. Epigenetics today and tomorrow, Vavilov Zh. Genet. Selekt., 17, 805–831.Google Scholar
  30. 30.
    Horvath, S. (2013. DNA methylation age of human tissues and cell types, Genome Biol., 14, 115.CrossRefGoogle Scholar
  31. 31.
    Issa, J.-P. J., Ahuja, N., Toyota, M., Bronner, M. P., and Brentnall, T. A. (2001. Accelerated age-related CpG island methylation in ulcerative colitis, Cancer Res., 61, 3573–3577.PubMedGoogle Scholar
  32. 32.
    Kang, G. H., Lee, H. J., Hwang, K. S., Lee, S., Kim, J.H., and Kim, J.-S. (2003. Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation, Am. J. Pathol., 163, 1551–1556.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., and De Benedictis, G. (2000. Inflamm-aging: an evolutionary perspective on immunosenescence, Ann. N.Y. Acad. Sci., 908, 244–254.CrossRefPubMedGoogle Scholar
  34. 34.
    Bellizzi, D., Cavalcante, P., Taverna, D., Rose, G., Passarino, G., Salvioli, S., Franceschi, C., and De Benedictis, G. (2006. Gene expression of cytokines and cytokine receptors is modulated by the common variability of the mitochondrial DNA in cybrid cell lines, Genes Cells, 11, 883–891.CrossRefPubMedGoogle Scholar
  35. 35.
    Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging (Albany N.Y.), 6, 661.Google Scholar
  36. 36.
    Zorov, D. B., Filburn, C. R., Klotz, L.-O., Zweier, J. L., and Sollott, S. J. (2000. Reactive oxygen species (ROSinduced) ROS release a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, J. Exp. Med., 192, 1001–1014.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    O’Hagan, H. M., Wang, W., Sen, S., Shields, C. D., Lee, S. S., Zhang, Y. W., Clements, E. G., Cai, Y., Van Neste, L., and Easwaran, H. (2011. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands, Cancer Cell, 20, 606–619.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Skulachev, V. P., and Longo, V. D. (2005. Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann. N.Y. Acad. Sci., 1057, 145–164.CrossRefPubMedGoogle Scholar
  39. 39.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., and Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009. An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.CrossRefPubMedGoogle Scholar
  40. 40.
    Harman, D. (1972. The biologic clock: the mitochondria? J. Am. Geriatr. Soc., 20, 145–147.CrossRefPubMedGoogle Scholar
  41. 41.
    Wallace, D. C. (2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine, Annu. Rev. Genet., 39, 359–407.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Khrapko, K., Coller, H. A., Andre, P. C., Li, X. C., Hanekamp, J. S., and Thilly, W. G. (1997. Mitochondrial mutational spectra in human cells and tissues, Proc. Natl. Acad. Sci. USA, 94, 13798–13803.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Brierley, E. J., Johnson, M. A., Lightowlers, R. N., James, O. F., and Turnbull, D. M. (1998. Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle, Ann. Neurol., 43, 217–223.CrossRefPubMedGoogle Scholar
  44. 44.
    Richter, C., Park, J. W., and Ames, B. N. (1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. Natl. Acad. Sci. USA, 85, 6465–6467.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    De Bont, R., and Van Larebeke, N. (2004. Endogenous DNA damage in humans: a review of quantitative data, Mutagenesis, 19, 169–185.CrossRefPubMedGoogle Scholar
  46. 46.
    Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofer, T., Seo, A. Y., Sullivan, R., Jobling, W. A., Morrow, J. D., Van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., and Prolla, T. A. (2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging, Science, 309, 481–484.CrossRefPubMedGoogle Scholar
  47. 47.
    Khrapko, K., and Turnbull, D. (2014. Mitochondrial DNA mutations in aging, Prog. Mol. Biol. Transl. Sci., 127, 29–62.CrossRefPubMedGoogle Scholar
  48. 48.
    Kazak, L., Reyes, A., and Holt, I. J. (2012. Minimizing the damage: repair pathways keep mitochondrial DNA intact, Nat. Rev. Mol. Cell Biol., 13, 659–671.CrossRefPubMedGoogle Scholar
  49. 49.
    Kamenisch, Y., and Berneburg, M. (2013. Mitochondrial CSA and CSB: protein interactions and protection from ageing associated DNA mutations, Mech. Ageing Dev., 134, 270–274.CrossRefPubMedGoogle Scholar
  50. 50.
    Sage, J. M., and Knight, K. L. (2013. Human Rad51 promotes mitochondrial DNA synthesis under conditions of increased replication stress, Mitochondrion, 13, 350–356.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Kennedy, S. R., Salk, J. J., Schmitt, M. W., and Loeb, L. A. (2013. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage, PLoS Genet., 9, e1003794.Google Scholar
  52. 52.
    Vermulst, M., Bielas, J. H., Kujoth, G. C., Ladiges, W. C., Rabinovitch, P. S., Prolla, T. A., and Loeb, L. A. (2007. Mitochondrial point mutations do not limit the natural lifespan of mice, Nat. Genet., 39, 540–543.CrossRefPubMedGoogle Scholar
  53. 53.
    Dzitoyeva, S., Chen, H., and Manev, H. (2012. Effect of aging on 5-hydroxymethylcytosine in brain mitochondria, Neurobiol. Aging, 33, 2881–2891.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Takasugi, M., Yagi, S., Hirabayashi, K., and Shiota, K. (2010. DNA methylation status of nuclear-encoded mitochondrial genes underlies the tissue-dependent mitochondrial functions, BMC Genomics, 11, 481.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Hashizume, O., Ohnishi, S., Mito, T., Shimizu, A., Iashikawa, K., Nakada, K., Soda, M., Mano, H., Togayachi, S., Miyoshi, H., Okita, K., and Hayashi, J. (2015. Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects, Sci. Rep., 5, 10434.CrossRefPubMedGoogle Scholar
  56. 56.
    Boesch, P., Weber-Lotfi, F., Ibrahim, N., Tarasenko, V., Cosset, A., Paulus, F., Lightowlers, R. N., and Dietrich, A. (2011. DNA repair in organelles: pathways, organization, regulation, relevance in disease and aging, Biochim. Biophys. Acta, 1813, 186–200.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang, Y., Lyu, Y. L., and Wang, J. C. (2002. Dual localization of human DNA topoisomerase 3a to mitochondria and nucleus, Proc. Natl. Acad. Sci. USA, 99, 12114–12119.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Low, R. L., Orton, S., and Friedman, D. B. (2003. A truncated form of DNA topoisomerase 2ß associates with the mtDNA genome in mammalian mitochondria, Eur. J. Biochem., 270, 4173–4186.CrossRefPubMedGoogle Scholar
  59. 59.
    Skulachev, V. P. (1999. Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityFaculty of Bioengineering and BioinformaticsMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations