Biochemistry (Moscow)

, Volume 80, Issue 12, pp 1547–1559 | Cite as

Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging

  • G. A. Shilovsky
  • T. S. Putyatina
  • A. V. Markov
  • V. P. Skulachev


Accumulation of various types of unrepaired damage of the genome because of increasing production of reactive oxygen species and decreasing efficiency of the antioxidant defense system and repair systems can cause age-related diseases and emergence of phenotypic signs of senescence. This should lead to increasing vulnerability and to mortality monotonously increasing with age independently of the position of the species on the evolutionary tree. In this light, the survival, mortality, and fertility curves for 45 animal and plant species and one alga published by the Max Planck Institute for Demographic Research (Germany/Denmark) are of special interest (Jones, O. R., et al. (2014) Nature, 505, 169-173). We divided all species treated in that study into four groups according to the ratio of mortality at the terminal age (which corresponds to 5% survival) and average mortality during the entire studied period. For animals of group IV (long-lived and senescent), including humans, the Jones method makes it possible to trace mortality during the entire life cycle. The same applies to short-lived animals (e.g. nematodes or the tundra vole), whether they display the Gompertz type of senescence or not. However, in long-lived species with a less pronounced increase in mortality with age (e.g. the freshwater crocodile, hermit crab, or Scots pine), as well as in animals of average lifespan that reach the terminal age earlier than they could have enough time to become senescent, the Jones method is capable of characterizing only a small part of the life cycle and does not allow judging how senescence manifests itself at late stages of the life cycle. Thus, it is known that old trees display signs of biological senescence rather clearly; although Jones et al. consider them non-senescent organisms because less than 5% of sexually mature individuals survive to display the first manifestations of these characters. We have concluded that the classification proposed by Jones et al. makes it possible to approximately divide animals and plants only by their levels of the Gompertz type of senescence (i.e. actuarial senescence), whereas susceptibility to biological senescence can be estimated only when principally different models are applied.


lifespan senescence non-senescent species survival curves phenoptosis 





reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., QuintanaAscencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014. Diversity of ageing across the tree of life, Nature, 505, 169–173.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Harman, D. (1956. Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298–300.CrossRefPubMedGoogle Scholar
  3. 3.
    Emanuel’, N. M. (1982) Biology of Ageing [in Russian], Nauka, Leningrad.Google Scholar
  4. 4.
    Khokhlov, A. N. (1988) Cell proliferation and aging, in Advances in Science and Technology, General Problems of Physico-Chemical Biology Series [in Russian], Vol. 9, VINITI, Moscow.Google Scholar
  5. 5.
    Akif’ev, A. P., and Potapenko, A. I. (2001. Nuclear genetic material as an initial substrate of aging in animals, Russ. J. Genet., 37, 1213–1223.CrossRefGoogle Scholar
  6. 6.
    Finkel, T., and Holbrook, N. J. (2000. Oxidants, oxidative stress, and the biology of ageing, Nature, 408, 239–247.CrossRefPubMedGoogle Scholar
  7. 7.
    Barja, G. (2004. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical productionDNA damage mechanism? Biol. Rev., 79, 235–251.CrossRefPubMedGoogle Scholar
  8. 8.
    Stadtman, E. R. (1992. Protein oxidation and aging, Science, 257, 1220–1224.CrossRefPubMedGoogle Scholar
  9. 9.
    Hamilton, M. L., Van Remmen, H., Drake, J. A., Yang, H., Guo, Z. M., Kewitt, K., Walter, C. A., and Richardson, A. (2001. Does oxidative damage to DNA increase with age? Proc. Natl. Acad. Sci. USA, 98, 10469–10474.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kujoth, G. C., Bradshaw, P. C., Haroon, S., and Prolla, T. A. (2007. The role of mitochondrial DNA mutations in mammalian aging, PLoS Genet., 3, 161–173.CrossRefGoogle Scholar
  11. 11.
    Skulachev, M. V., and Skulachev, V. P. (2014. New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.CrossRefGoogle Scholar
  12. 12.
    Shilovsky, G. A., Khokhlov, A. N., and Shram, S. I. (2013. The protein poly(ADP-ribosyl)ation system: its role in genome stability and lifespan determination, Biochemistry (Moscow), 78, 433–444.CrossRefGoogle Scholar
  13. 13.
    Pero, R. W., Holmgren, K., and Persson, L. (1985. ?-Radiation induced ADP-ribosyl transferase activity and mammalian longevity, Mutat. Res., 142, 69–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Finch, C. E. (1990) Longevity, Senescence and the Genome, University Chicago Press, Chicago.Google Scholar
  15. 15.
    Austad, S. N. (1997) Why We Age, John Wiley and Sons, New York.Google Scholar
  16. 16.
    Anisimov, V. N. (2008) Molecular and Physiological Mechanism of Senescence [in Russian], Nauka, St. Petersburg.Google Scholar
  17. 17.
    Gavrilov, L. A., Gavrilova, N. S., and Yaguzhinsky, L. S. (1978. Basic patterns of aging and death in animals from the standpoint of reliability theory, Zh. Obshch. Biol., 39, 734–742.PubMedGoogle Scholar
  18. 18.
    Urlanis, B. Ts. (1978) Evolution of Longevity [in Russian], Statistika, Moscow.Google Scholar
  19. 19.
    Gavrilov, L. A., and Gavrilova, N. S. (1991) Biology of Longevity [in Russian], Nauka, Moscow.Google Scholar
  20. 20.
    Mamai, A. V. (2006. Mathematical model for survival of organisms, Trudy ISA RAN, 19, 70–93.Google Scholar
  21. 21.
    Khalyavkin, A. V., and Yashin, A. I. (2007) in Gerontology in silico: the Emergence of the New Discipline: Mathematical Models, Analysis of Data, and Calculating Experiments (Marchuk, G. I., Anisimov, V. N., Romaniukha, A. A., and Yashin, A. I., eds.) BINOM, Laboratoriya Znanii, Moscow.Google Scholar
  22. 22.
    Gompertz, B. (1825. On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philos. Trans. R. Soc. London, 115, 513–585.CrossRefGoogle Scholar
  23. 23.
    Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinburgh-London.Google Scholar
  24. 24.
    McNamara, J. M., and Houston, A. I. (1996. Statedependent life histories, Nature, 380, 215–221.CrossRefPubMedGoogle Scholar
  25. 25.
    Finch, C. E. (1998. Variations in senescence and longevity include the possibility of negligible senescence, J. Gerontol. Biol. Sci., 53, 235–239.CrossRefGoogle Scholar
  26. 26.
    Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Clarendon Press, Oxford.CrossRefGoogle Scholar
  27. 27.
    Williams, G. C. (1957. Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.CrossRefGoogle Scholar
  28. 28.
    Kirkwood, T. B. L. (1977. Evolution of ageing, Nature, 270, 301–304.CrossRefPubMedGoogle Scholar
  29. 29.
    Medvedev, Z. A. (1990. An attempt at a rational classification of theories of ageing, Biol. Rev. Camb. Philos. Soc., 65, 375–398.CrossRefPubMedGoogle Scholar
  30. 30.
    Campisi, J. (2005. Aging, tumor suppression and cancer: high wire-act! Mech. Ageing Dev., 126, 51–58.CrossRefPubMedGoogle Scholar
  31. 31.
    Kirkwood, T. B. L. (2010. Systems biology of ageing and longevity, Phil. Trans. R. Soc. B, 366, 64–70.CrossRefGoogle Scholar
  32. 32.
    Baudisch, A. (2008) Inevitable Aging? Contributions to Evolutionary-Demographic Theory, Springer-Verlag, BerlinHeidelberg.Google Scholar
  33. 33.
    Lamb, M. J. (1977) Biology of Aging, John Wiley and Sons, New York.Google Scholar
  34. 34.
    Grzimek, B. (1990) Grzimek’s Encyclopedia of Mammals, McGraw-Hill, New York.Google Scholar
  35. 35.
    Carey, J. R., and Judge, D. S. (2001) Monographs on Population Aging, Ser. 8, Odense University Press, Odense, Denmark.Google Scholar
  36. 36.
    Buffenstein, R. (2005) The naked mole-rat: a new long-living model for human aging research, J. Gerontol., 60, 13691377.CrossRefGoogle Scholar
  37. 37.
    Voituron, Y., De Fraipont, M., Issartel, J., Guillaume, O., and Clobert, J. (2011. Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms, Biol. Lett., 7, 105–107.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Skulachev, V. P. (1997. Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  39. 39.
    Skulachev, V. P. (1999. Phenoptosis: programmed death of an organism? Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  40. 40.
    Skulachev, V. P. (2003) Aging and the programmed death phenomena, in Top. Curr. Genet. Model Syst. Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer-Verlag, Berlin-Heidelberg.Google Scholar
  41. 41.
    Skulachev, V. P., and Longo, V. D. (2005. Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann. N. Y. Acad. Sci., 1057, 145–164.CrossRefPubMedGoogle Scholar
  42. 42.
    Dawkins, R. (1999) The Extended Phenotype: the Long Reach of the Gene, Oxford University Press, Oxford.Google Scholar
  43. 43.
    Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005. Programmed and altruistic ageing, Nat. Rev. Genet., 6, 866–872.CrossRefPubMedGoogle Scholar
  44. 44.
    Libertini, G. (2012. Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.CrossRefGoogle Scholar
  45. 45.
    Libertini, G. (2012. Phenoptosis, another specialized neologism, or the mark of a widespread revolution? Biochemistry (Moscow), 77, 795–798.CrossRefGoogle Scholar
  46. 46.
    Skulachev, V. P. (2012. What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.CrossRefGoogle Scholar
  47. 47.
    Terzibasi, E., Valenzano, D. R., and Cellerino, A. (2007. The short-lived fish Nothobranchius furzeri as a new model system for aging studies, Exp. Gerontol., 42, 81–89.CrossRefPubMedGoogle Scholar
  48. 48.
    Weinert, B. T., and Timiras, P. S. (2003. Invited review: theories of aging, J. Appl. Physiol., 95, 1706–1716.CrossRefPubMedGoogle Scholar
  49. 49.
    Hoving, H. J., Perez, J. A., Bolstad, K. S., Braid, H. E., Evans, A. B., Fuchs, D., Judkins, H., Kelly, J. T., Marian, J. E., Nakajima, R., Piatkowski, U., Reid, A., Vecchione, M., and Xavier, J. C. (2014. The study of deep-sea cephalopods, Adv. Mar. Biol., 67, 235–239.CrossRefPubMedGoogle Scholar
  50. 50.
    Bradley, A. J., Mcdonald, I. R., and Lee, A. K. (1980. Stress and mortality in a small marsupial (Antechinus stuartii, Macleay), Gen. Comp. Endocrinol., 40, 188–200.CrossRefPubMedGoogle Scholar
  51. 51.
    Lens, F., Smets, E., and Melzer, S. (2012. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness, New Phytol., 193, 12–17.CrossRefPubMedGoogle Scholar
  52. 52.
    Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana, Nat. Genet., 40, 1489–1492.CrossRefPubMedGoogle Scholar
  53. 53.
    Lindoo, S. J., and Nooden, L. D. (1977. Studies on behavior of senescence signal in Anoka soybeans, Plant Physiol., 59, 1136–1140.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Nooden, L. D., and Murray, B. J. (1982. Transmission of the monocarpic senescence signal via the xylem in soybean, Plant Physiol., 69, 754–756.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Bowles, J. T. (1998. The evolution of aging: a new approach to an old problem of biology, Med. Hypotheses, 51, 179–221.CrossRefPubMedGoogle Scholar
  56. 56.
    Ashapkin, V. V., Kutueva, L. I., and Vanyushin, B. F. (2015. Aging epigenetics: accumulation of errors or realization of a specific program? Biochemistry (Moscow), 80, 1406–1417.CrossRefGoogle Scholar
  57. 57.
    Boyd-Kirkup, J. D., Green, C. D., Wu, G., Wang, D., and Han, J. D. (2013. Epigenomics and the regulation of aging, Epigenomics, 5, 205–227.CrossRefPubMedGoogle Scholar
  58. 58.
    Guarente, L., and Kenyon, C. (2000. Genetic pathways that regulate ageing in model organisms, Nature, 408, 255–262.CrossRefPubMedGoogle Scholar
  59. 59.
    Vijg, J., and Suh, Y. (2005. Genetics of longevity and aging, Annu. Rev. Med., 56, 193–212.CrossRefPubMedGoogle Scholar
  60. 60.
    Vaupel, J. W., Baudisch, A., Dolling, M., Roach, D. A., and Gampe, J. (2004. The case for negative senescence, Theor. Popul. Biol., 65, 339–351.CrossRefPubMedGoogle Scholar
  61. 61.
    Chiang, C. L. (1984) The Life Table and Its Applications, Robert E. Krieger Publishing Company, Malabar, Florida.Google Scholar
  62. 62.
    Medawar, P. B. (1952) An Unsolved Problem of Biology, H. C. Lewis and Co. Ltd, London.Google Scholar
  63. 63.
    Hamilton, W. D. (1966. The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.CrossRefPubMedGoogle Scholar
  64. 64.
    Pearl, R., and Miner, J. R. (1935. Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms, Q. Rev. Biol., 10, 60–79.CrossRefGoogle Scholar
  65. 65.
    Deevey, E. S. (1947. Life tables for natural populations of animals, Q. Rev. Biol., 22, 283–314.CrossRefPubMedGoogle Scholar
  66. 66.
    Baudisch, A. (2011. The pace and shape of ageing, Methods Ecol. Evol., 2, 375–382.CrossRefGoogle Scholar
  67. 67.
    Oeppen, J., and Vaupel, J. W. (2002. Broken limits to life expectancy, Science, 296, 1029–1031.CrossRefPubMedGoogle Scholar
  68. 68.
    Burger, O., Baudisch, A., and Vaupel, J. W. (2012. Human mortality improvement in evolutionary context, Proc. Natl. Acad. Sci. USA, 109, 18210–18214.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Ricklefs, R. E., Scheuerlein, A., and Cohen, A. (2003. Age-related patterns of fertility in captive populations of birds and mammals, Exp. Gerontol., 38, 741–745.CrossRefPubMedGoogle Scholar
  70. 70.
    Cohen, A. A. (2004. Female post-reproductive lifespan: a general mammalian trait, Biol. Rev. Camb. Philos. Soc., 79, 733–750.CrossRefPubMedGoogle Scholar
  71. 71.
    Brent, L. J., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., and Croft, D. P. (2015. Ecological knowledge, leadership, and the evolution of menopause in killer whales, Curr. Biol., 25, 746–750.CrossRefPubMedGoogle Scholar
  72. 72.
    Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., Iachine, I. A., Kannisto, V., Khazaeli, A. A., Liedo, P., Longo, V. D., Zeng, Y., Manton, K. G., and Curtsinger, J. W. (1998. Biodemographic trajectories of longevity, Science, 280, 855–860.CrossRefPubMedGoogle Scholar
  73. 73.
    Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015. Aging as an evolvability-increasing program, which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.CrossRefPubMedGoogle Scholar
  74. 74.
    Khokhlov, A. N. (2010. Does aging need an own program or the existing development program is more than enough, Russ. J. Gen. Chem., 80, 1507–1513.CrossRefGoogle Scholar
  75. 75.
    Khokhlov, A. N. (2014. On the immortal hydra. Again, Mosc. Univ. Biol. Sci. Bull., 69, 153–157.CrossRefGoogle Scholar
  76. 76.
    Sergeev, A. M. (1937. Materials contributing to the problem of postembryonic growth in reptiles, Zool. Zh., 16, 723.Google Scholar
  77. 77.
    Miller, J. K. (2001. Escaping senescence: demographic data from the three-toed box turtle (Terrapene carolina triunguis), Exp. Gerontol., 36, 829–832.CrossRefPubMedGoogle Scholar
  78. 78.
    Salguero-Gomez, R., Shefferson, R. P., and Hutchings, M. J. (2013. Plants do not count… or do they? New perspectives on the universality of senescence, J. Ecol., 101, 545–554.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Shefferson, R. P., and Roach, D. A. (2013. Longitudinal analysis in Plantago: strength of selection and reverse age analysis reveal age-indeterminate senescence, J. Ecol., 101, 577–584.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Tuomi, J., Crone, E., Gremer, J., Jakalaniemi, A., Lesica, P., Pedersen, B., and Ramula, S. (2013. Prolonged dormancy interacts with senescence for two perennial herbs, J. Ecol., 101, 566–576.CrossRefGoogle Scholar
  81. 81.
    Hayflick, L., and Butler, R. N. (1994) How and Why We Age, Ballantine Books, New York.Google Scholar
  82. 82.
    Bell, G. (1984. Measuring the cost of reproduction. I. The correlation structure of the life table of a plank rotifer, Evolution, 38, 300–313.CrossRefGoogle Scholar
  83. 83.
    Franco, M., and Silvertown, J. (1996. Life history variation in plants: an exploration of the fast-slow continuum hypothesis, Phil. Trans. R. Soc. B, 351, 1341–1348.CrossRefGoogle Scholar
  84. 84.
    Buss, L. W. (1988. Diversification and germ-line determination, Paleobiology, 14, 313–321.Google Scholar
  85. 85.
    Martinez, D. E., and Levinton, J. S. (1992. Asexual metazoans undergo senescence, Proc. Natl. Acad. Sci. USA, 89, 9920–9923.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Baudisch, A., and Vaupel, J. (2010. Senescence vs. sustenance: evolutionary-demographic models of aging, Demogr. Res., 23, 655–668.CrossRefGoogle Scholar
  87. 87.
    Martinez, D. E. (1998. Mortality patterns suggest lack of senescence in hydra, Exp. Gerontol., 33, 217–225.CrossRefPubMedGoogle Scholar
  88. 88.
    Markov, A. V. (2012. Can kin selection facilitate the evolution of the genetic program of senescence? Biochemistry (Moscow), 77, 733–741.CrossRefGoogle Scholar
  89. 89.
    Caswell, H. (2012. Matrix models and sensitivity analysis of populations classified by age and stage: a vec-permutation matrix approach, Theor. Ecol., 5, 403–417.CrossRefGoogle Scholar
  90. 90.
    Gadgil, M., and Bossert, W. H. (1970. Life historical consequences of natural selection, Am. Nat., 104, 1–24.CrossRefGoogle Scholar
  91. 91.
    Ricklefs, R. E. (2010. Life-history connections to rates of aging in terrestrial vertebrates, Proc. Natl. Acad. Sci. USA, 107, 10314–10319.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Gavrilov, L. A., and Gavrilova, N. S. (2002. Evolutionary theories of aging and longevity, Sci. World J., 2, 339–356.CrossRefGoogle Scholar
  93. 93.
    Khalyavkin, A. V. (2001. Influence of environment on the mortality pattern of potentially non-senescent organisms. General approach and comparison with real populations, Adv. Gerontol., 7, 46–49.Google Scholar
  94. 94.
    Dubrovitskaya, N. I. (1961) Regeneration and Age-Related Variations in Plants [in Russian], ANSSSR, Moscow.Google Scholar
  95. 95.
    Markov, M. V. (1986) Population Biology of Plants [in Russian], Kazan University Press, Kazan.Google Scholar
  96. 96.
    Charmantier, A., Perrins, C., McCleery, R. H., and Sheldon, B. C. (2006. Quantitative genetics of age at reproduction in wild swans: support for antagonistic pleiotropy models of senescence, Proc. Natl. Acad. Sci. USA, 103, 6587–6592.PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Terres, J. (1980) The Audubon Society Encyclopedia of North American Birds, Knopf, New York.Google Scholar
  98. 98.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. (2001. Effects of size and temperature on metabolic rate, Science, 293, 2248–2251.CrossRefPubMedGoogle Scholar
  99. 99.
    Ungvari, Z., Sosnowska, D., Mason, J. B., Gruber, H., Lee, S. W., Schwartz, T. S., Brown, M. K, Storm, N. J., Fortney, K., Sowa, J., Byrne, A. B., Kurz, T., Levy, E., Sonntag, W. E., Austad, S. N., Csiszar, A., and Ridgway, I. (2013. Resistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype? J. Gerontol. A Biol. Sci. Med. Sci., 68, 521–529.PubMedCentralCrossRefPubMedGoogle Scholar
  100. 100.
    Druffel, E. R., Griffin, M. S., Witter, A., Nelson, E., Southon, J., Kashgarian, M., and Vogel, J. (1995. Gerardia: bristlecone pine of the deep-sea? Geochim. Cosmochim. Acta, 59, 5031–5036.CrossRefGoogle Scholar
  101. 101.
    Andrews, A. H., Cordes, E. E., Mahoney, M. M., Munk, K., Coale, K. H., Cailliet, G. M., and Heifetz, J. (2002. Age, growth, and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska, Hydrobiologia, 471, 101–110.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. A. Shilovsky
    • 1
    • 2
    • 3
  • T. S. Putyatina
    • 3
  • A. V. Markov
    • 3
  • V. P. Skulachev
    • 1
    • 2
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Lomonosov Moscow State UniversityFaculty of Bioengineering and BioinformaticsMoscowRussia
  3. 3.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia

Personalised recommendations