Biochemistry (Moscow)

, Volume 80, Issue 11, pp 1522–1527 | Cite as

Moss phylogeny reconstruction using nucleotide pangenome of complete Mitogenome sequences

  • D. V. Goryunov
  • B. E. Nagaev
  • M. Yu. Nikolaev
  • A. V. Alexeevski
  • A. V. Troitsky


Stability of composition and sequence of genes was shown earlier in 13 mitochondrial genomes of mosses (Rensing, S. A., et al. (2008) Science, 319, 64-69). It is of interest to study the evolution of mitochondrial genomes not only at the gene level, but also on the level of nucleotide sequences. To do this, we have constructed a “nucleotide pangenome” for mitochondrial genomes of 24 moss species. The nucleotide pangenome is a set of aligned nucleotide sequences of orthologous genome fragments covering the totality of all genomes. The nucleotide pangenome was constructed using specially developed new software, NPG-explorer (NPGe). The stable part of the mitochondrial genome (232 stable blocks) is shown to be, on average, 45% of its length. In the joint alignment of stable blocks, 82% of positions are conserved. The phylogenetic tree constructed with the NPGe program is in good correlation with other phylogenetic reconstructions. With the NPGe program, 30 blocks have been identified with repeats no shorter than 50 bp. The maximal length of a block with repeats is 140 bp. Duplications in the mitochondrial genomes of mosses are rare. On average, the genome contains about 500 bp in large duplications. The total length of insertions and deletions was determined in each genome. The losses and gains of DNA regions are rather active in mitochondrial genomes of mosses, and such rearrangements presumably can be used as additional markers in the reconstruction of phylogeny.


mosses phylogeny pangenome mitochondrial genome 



base pair


mitochondrial genome


mitochondrial DNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rensing, S. A., Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P.-F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin, I. T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S.-I., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W. B., Barker, E., Bennetzen, J. L., Blankenship, R., Cho, S.-H., Dutcher, S. K., Estelle, M., Fawcett, J. A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K. A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D. R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P. J., Sanderfoot, A., Schween, G., Shiu, S.-H., Stueber, K., Theodoulou, F. L., Tu, H., Van de Peer, Y., Verrier, P. J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A. C., Hasebe, M., Lucas, S., Mishler, B. D., Reski, R., Grigoriev, I. V., Quatrano, R. S., and Boore, J. L. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants, Science, 319, 64–69.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu, Y., Medina, R., and Goffinet, B. (2014) 350 My of mitochondrial genome stasis in mosses, an early land plant lineage, Mol. Biol. Evol., 31, 2586–2591.PubMedGoogle Scholar
  3. 3.
    Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L., Durkin, A. S., DeBoy, R. T., Davidsen, T. M., Mora, M., Scarselli, M., Margarit Y. Ros, I., Peterson, J. D., Hauser, C. R., Sundaram, J. P., Nelson, W. C., Madupu, R., Brinkac, L. M., Dodson, R. J., Rosovitz, M. J., Sullivan, S. A., Daugherty, S. C., Haft, D. H., Selengut, J., Gwinn, M. L., Zhou, L., Zafar, N., Khouri, H., Radune, D., Dimitrov, G., Watkins, K., O’Connor, K. J. B., Smith, S., Utterback, T. R., White, O., Rubens, C. E., Grandi, G., Madoff, L. C., Kasper, D. L., Telford, J. L., Wessels, M. R., Rappuoli, R., and Fraser, C. M. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”, Proc. Natl. Acad. Sci. USA, 102, 13950–13955.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Vernikos, G., Medini, D., Riley, D. R., and Tettelin, H. (2015) Ten years of pan-genome analyses, Curr. Opin. Microbiol., 23, 148–154.CrossRefPubMedGoogle Scholar
  5. 5.
    Xiao, J., Zhang, Z., Wu, J., and Yu, J. (2015) A brief review of software tools for pangenomics, Genom. Proteom. Bioinform., 3, 73–76.CrossRefGoogle Scholar
  6. 6.
    Guimaraes, L. C., De Jesus, L. B., Viana, M. V. C., Silva, A., Ramos, R. T. J., Soares, S. C., and Azevedo, V. (2015) Inside the pan-genome–methods and software overview, Curr. Genom., 16, 245–252.CrossRefGoogle Scholar
  7. 7.
    Donati, C., Hiller, N. L., Tettelin, H., Muzzi, A., Croucher, N. J., Angiuoli, S. V., Oggioni, M., Hotopp, J. C. D., Hu, F. Z., Riley, D. R., Covacci, A., Mitchell, T. J., Bentley, S. D., Kilian, M., Ehrlich, G. D., Rappuoli, R., Moxon, E. R., and Masignani, V. (2010) Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species, Genome Biol., 11, doi: 10.1186/gb-2010-11-10-r107.Google Scholar
  8. 8.
    Meric, G., Yahara, K., Mageiros, L., Pascoe, B., Maiden, M. C., Jolley, K. A., and Sheppardet, S. K. (2014) A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic campylobacter, PLoS One, 9, e92798.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Collins, R. E., and Higgs, P. G. (2012) Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome, Mol. Biol. Evol., 29, doi: 10.1093/molbev/mss163.Google Scholar
  10. 10.
    Song, G., Dickins, B. J., Demeter, J., Engel, S., Dunn, B., and Cherry, J. M. (2015) AGAPE (Automated Genome Analysis PipelinE) for pan-genome analysis of Saccharomyces cerevisiae, PLoS One, 10, e0120671.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Morgante, M., De Paoli, E., and Radovic, S. (2007) Transposable elements and the plant pan-genomes, Curr. Opin. Plant Biol., 10, 149–155.CrossRefPubMedGoogle Scholar
  12. 12.
    Li, Y. H., Zhou, G., Ma, J., Jiang, W., Jin, L. G., Zhang, Z., Li, Y. H., Zhou, G., Ma, J., Jiang, W., Jin, L. G., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., Zhang, S. S., Zuo, Q., Shi, X. H., Li, Y. F., Zhang, W. K., Hu, Y., Kong, G., Hong, H. L., Tan, B., Song, J., Liu, Z. X., Wang, Y., Ruan, H., Yeung, C. K., Liu, J., Wang, H., Zhang, L. J., Guan, R. X., Wang, K. J., Li, W. B., Chen, S. Y., Chang, R. Z., Jiang, Z., Jackson, S. A., Li, R., and Qiu, L. J. (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits, Nat. Biotechnol., 32, 1045–1052.CrossRefPubMedGoogle Scholar
  13. 13.
    Hirscha, C. N., Foersterc, J. M., Johnsonc, J. M., Sekhonc, R. S., Muttonic, G., Vaillancourta, B., Vaillancourta, B., Penagaricano, F., Lindquist, E., Pedraza, M. A., Barry, K., De Leon, N., Kaeppler, S. M., and Buell, C. R. (2014) Insights into the maize pan-genome and pantranscriptome, Plant Cell, 26, 121–135.CrossRefGoogle Scholar
  14. 14.
    Hirakawa, H., Okada, Y., Tabuchi, H., Shirasawa, K., Watanabe, A., Tsuruoka, H., Minami, C., Nakayama, S., Sasamoto, S., Kohara, M., Kishida, Y., Fujishiro, T., Kato, M., Nanri, K., Komaki, A., Yoshinaga, M., Takahata, Y., Tanaka, M., Tabata, S., and Isobe, S. N. (2015) Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H. B. K.) G. Don., DNA Res., 22, 171–179.Google Scholar
  15. 15.
    Dewey, C. N. (2012) Whole-genome alignment, Methods Mol. Biol., 855, 237–257.CrossRefPubMedGoogle Scholar
  16. 16.
    Darling, A. E., Mau, B., and Perna, N. T. (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss, and rearrangement, PLoS One, 5, e11147.CrossRefPubMedGoogle Scholar
  17. 17.
    Dubchak, I., Poliakov, A., Kislyuk, A., and Brudno, M. (2009) Multiple whole-genome alignments without a reference organism, Genome Res., 19, 682–689.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Laing, C., Buchanan, C., Taboada, E. N., Zhang, Y., Kropinski, A., Villegas, A., Thomas, J. E., and Gannon, V. P. (2010) Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions, BMC Bioinformatics, 11; doi: 10.1186/1471-2105-11-461.Google Scholar
  19. 19.
    Cox, C. J., Goffinet, B., Shaw, A. J., and Boles, S. B. (2004) Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments, Syst. Botany, 29, 234250.CrossRefGoogle Scholar
  20. 20.
    Van de Peer, Y., and De Wachter, R. (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites, Comput. Appl. Biosci., 13, 227–230.PubMedGoogle Scholar
  21. 21.
    Wang, B., Xue, J., Li, L., Liu, Y., and Qiu, Y. L. (2009) The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts, Curr. Genet., 55, 601–609.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu, Y., Xue, J. Yu., Wang, B., Li, L., and Qiu, Y. L. (2011) The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution, PLoS One, 6, e25836.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Liu, Y., Wang, B., Li, L., Qiu, Y. L., and Xue, J. (2012) Conservative and dynamic evolution of mitochondrial genomes in early land plants, in Genomics of Chloroplasts and Mitochondria (Bock, R., and Knoop, V., eds.) Ser. Advances in Photosynthesis and Respiration, vol. 35, pp. 159–174.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. V. Goryunov
    • 1
  • B. E. Nagaev
    • 1
    • 2
  • M. Yu. Nikolaev
    • 2
  • A. V. Alexeevski
    • 1
    • 2
    • 3
  • A. V. Troitsky
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Scientific Research Institute for System StudiesRussian Academy of SciencesMoscowRussia

Personalised recommendations