Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 11, pp 1492–1499 | Cite as

Primary structure of 28S rRNA gene confirms monophyly of free-living heterotrophic and phototrophic apicomplexans (Alveolata)

  • K. V. Mikhailov
  • D. V. Tikhonenkov
  • J. Janouškovec
  • A. Y. Diakin
  • M. V. Ofitserov
  • A. P. Mylnikov
  • V. V. Aleshin
Article

Abstract

Phylogenetic analysis of large subunit ribosomal RNA (LSU rRNA or 28S rRNA) gene sequences from free-living predatory flagellates Colpodella angusta, Voromonas pontica, and Alphamonas edax (Apicomplexa) confirms their close relationship with chromerids Chromera velia and Vitrella brassicaformis, which possess a functional photosynthetic plastid. Together these organisms form a sister group to parasitic apicomplexans (coccidians and gregarines, or sporozoans sensu lato). This result agrees with the previous conclusion on monophyly of colpodellids and chromerids (chrompodellids) based on phylogenomic data. The revealed relationships demonstrate a complex pattern of acquisition, loss, or modification of plastids and transition to parasitism during alveolate evolution.

Keywords

molecular phylogenetics ribosomal RNA genes apicomplexans Sporozoa heterotrophic flagellates plastids evolution of parasitism 

Abbreviations

OTUs

operational taxonomic units

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gajadhar, A. A., Marquardt, W. C., Hall, R., Gunderson, J., Ariztia-Carmona, E. V., and Sogin, M. L. (1991) Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata, and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates, Biochem. Parasitol., 45, 147–154.CrossRefGoogle Scholar
  2. 2.
    Mukhina, V. S. (2014) Origination and evolution of plastids, Zh. Obshch. Biol., 75, 329–352.PubMedGoogle Scholar
  3. 3.
    McFadden, G. I., Reith, M. E., Munholland, J., and LangUnnasch, N. (1996) Plastid in human parasites, Nature, 381, 482.CrossRefPubMedGoogle Scholar
  4. 4.
    Krylov, M. V., and Myl’nikov, A. P. (1986) New taxons in the type Sporozoa, Spiromonadomorphina subcl. n. Spiromonadida ordo n., Parazitologiya, 20, 425–430.Google Scholar
  5. 5.
    Kuvardina, O. N., Leander, B. S., Aleshin, V. V., Myl’ nikov, A. P., Keeling, P. J., and Simdyanov, T. G. (2002) The phylogeny of colpodellids (Alveolata) using small subunit rRNA gene sequences suggests they are the free-living sister group to apicomplexans, J. Eukaryot. Microbiol., 49, 498–504.CrossRefPubMedGoogle Scholar
  6. 6.
    Leander, B. S., and Keeling, P. J. (2003) Morphostasis in alveolate evolution, Trends Ecol. Evol., 18, 395–402.CrossRefGoogle Scholar
  7. 7.
    Moore, R. B., Obornik, M., Janouškovec, J., Chrudimsky, T., Vancova, M., Green, D. H., Wright, S. W., Davies, N. W., Bolch, C. J., Heimann, K., Slapeta, J., HoeghGuldberg, O., Logsdon, J. M., and Carter, D. A. (2008) A photosynthetic alveolate closely related to apicomplexan parasites, Nature, 451, 959–963.CrossRefPubMedGoogle Scholar
  8. 8.
    Obornik, M., Modry, D., Lukes, M., CernotikovaStribrna, E., Cihlar, J., Tesarova, M., Kotabova, E., Vancova, M., Prasil, O., and Lukes, J. (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef, Protist, 163, 306–323.CrossRefPubMedGoogle Scholar
  9. 9.
    Cavalier-Smith, T. (2014) Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa, Eur. J. Protistol., 50, 472–495.CrossRefPubMedGoogle Scholar
  10. 10.
    Gile, G. H., and Slamovits, C. H. (2014) Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites, PLoS One, 9, e96258.Google Scholar
  11. 11.
    Mikhailov, K. V., Janouškovec, J., Tikhonenkov, D. V., Mirzaeva, G. S., Diakin, A. Y., Simdyanov, T. G., Mylnikov, A. P., Keeling, P. J., and Aleoshin, V. V. (2014) A complex distribution of elongation family GTPases EF1A and EFL in basal alveolate lineages, Genome Biol. Evol., 6, 2361–2367.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Janouškovec, J., Tikhonenkov, D. V., Burki, F., Howe, A. T., Kolisko, M., Mylnikov, A. P., and Keeling, P. J. (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives, Proc. Natl. Acad. Sci. USA, 112, 10200–10207.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Van der Auwera, G., Chapelle, S., and De Wachter, R. (1994) Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes, FEBS Lett., 338, 133–136.CrossRefPubMedGoogle Scholar
  14. 14.
    Cavalier-Smith, T., and Chao, E. E. (2004) Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.), Eur. J. Protistol., 40, 185–212.CrossRefGoogle Scholar
  15. 15.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389–33402.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792–1797.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 41, 95–98.Google Scholar
  18. 18.
    Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 61, 539–542.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Gelman, A., and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457–472.CrossRefGoogle Scholar
  20. 20.
    Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312–1313.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kass, R. E., and Raftery, A. E. (1995) Bayes factors, J. Am. Stat. Assoc., 90, 773–795.CrossRefGoogle Scholar
  22. 22.
    Shimodaira, H., and Hasegawa, M. (2001) CONSEL: for assessing the confidence of phylogenetic tree selection, Bioinformatics, 17, 1246–1247.CrossRefPubMedGoogle Scholar
  23. 23.
    Page, R. D. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers, Comput. Appl. Biosci., 12, 357–358.PubMedGoogle Scholar
  24. 24.
    Schmidt, H. A., Strimmer, K., Vingron, M., and Von Haeseler, A. (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing, Bioinformatics, 18, 502–504.CrossRefPubMedGoogle Scholar
  25. 25.
    Wylezich, C., Nies, G., Mylnikov, A. P., Tautz, D., and Arndt, H. (2010) An evaluation of the use of the LSU rRNA D1-D5 domain for DNA-based taxonomy of eukaryotic protists, Protist, 161, 342–352.CrossRefPubMedGoogle Scholar
  26. 26.
    Beloqui, A., Nechitaylo, T. Y., Lopez-Cortes, N., Ghazi, A., Guazzaroni, M. E., Polaina, J., Strittmatter, A. W., Reva, O., Waliczek, A., Yakimov, M. M., Golyshina, O. V., Ferrer, M., and Golyshin, P. N. (2010) Diversity of glycosyl hydrolases from cellulose-depleting communities enriched from casts of two earthworm species, Appl. Environ. Microbiol., 76, 5934–5946.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Hollister, E. B., Schadt, C. W., Palumbo, A. V., Ansley, R. J., and Boutton, T. W. (2010) Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains, Soil Biol. Biochem., 42, 1816–1824.CrossRefGoogle Scholar
  28. 28.
    Zhang, T., Victor, T. R., Rajkumar, S. S., Li, X., Okoniewski, J. C., Hicks, A. C., Davis, A. D., Broussard, K., LaDeau, S. L., Chaturvedi, S., and Chaturvedi, V. (2014) Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans, PLoS One, 9, e116149.CrossRefGoogle Scholar
  29. 29.
    De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J. M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O., LimaMendez, G., Lukes, J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Tara Oceans Coordinators–Acinas, S. G., Bork, P., Bowler, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S., Raes, J., Sieracki, M. E., Speich, S., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P., and Karsenti, E. (2015) Eukaryotic plankton diversity in the sunlit ocean, Science, 348, doi: 10.1126/science.1261605.Google Scholar
  30. 30.
    Carreno, R. A., Martin, D. S., and Barta, J. R. (1999) Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences, Parasitol. Res., 85, 899–904.CrossRefPubMedGoogle Scholar
  31. 31.
    Siddall, M. E., Reece, K. S., Graves, J. E., and Burreson, E. M. (1997) Total evidence refutes the inclusion of Perkinsus species in the phylum Apicomplexa, Parasitology, 115, 165–176.CrossRefPubMedGoogle Scholar
  32. 32.
    Yabuki, A., Toyofuku, T., and Takishita, K. (2014) Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes, ISME J., 8, 1544–1547.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Massana, R., Karniol, B., Pommier, T., Bodaker, I., and Beja, O. (2008) Metagenomic retrieval of a ribosomal DNA repeat array from an uncultured marine alveolate, Environ. Microbiol., 10, 1335–1343.CrossRefPubMedGoogle Scholar
  34. 34.
    Marande, W., Lopez-Garcia, P., and Moreira, D. (2009) Eukaryotic diversity and phylogeny using smalland largesubunit ribosomal RNA genes from environmental samples, Environ. Microbiol., 11, 3179–3188.CrossRefPubMedGoogle Scholar
  35. 35.
    Coats, D. W., Bachvaroff, T. R., and Delwiche, C. F. (2012) Revision of the family Duboscquellidae with description of Euduboscquella crenulata n. gen., n. sp. (Dinoflagellata, Syndinea), an intracellular parasite of the ciliate Favella panamensis Kofoid & Campbell, J. Eukaryot. Microbiol., 59, 1–11.CrossRefPubMedGoogle Scholar
  36. 36.
    Lepelletier, F., Karpov, S. A., Le Panse, S., Bigeard, E., Skovgaard, A., Jeanthon, C., and Guillou, L. (2014) Parvilucifera rostrata sp. nov. (Perkinsozoa), a novel parasitoid that infects planktonic dinoflagellates, Protist, 165, 31–49.CrossRefPubMedGoogle Scholar
  37. 37.
    Coats, D. W., Kim, S., Bachvaroff, T. R., Handy, S. M., and Delwiche, C. F. (2010) Tintinnophagus acutus ng., nsp. (phylum Dinoflagellata), an ectoparasite of the ciliate Tintinnopsis cylindrica Daday 1887, and its relationship to Duboscquodinium collini Grasse 1952, J. Eukaryot. Microbiol., 57, 468–482.CrossRefPubMedGoogle Scholar
  38. 38.
    Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y. H., and Smith, H. O. (2004) Environmental genome shotgun sequencing of the Sargasso Sea, Science, 304, 66–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Wu, W., Huang, B., Liao, Y., and Sun, P. (2014) Picoeukaryotic diversity and distribution in the subtropicaltropical South China Sea, FEMS Microbiol. Ecol., 89, 563579.Google Scholar
  40. 40.
    Siddall, M. E., Reece, K. S., Nerad, T. A., and Burreson, E. M. (2001) Molecular determination of the phylogenetic position of a species in the genus Colpodella (Alveolata), Am. Mus. Novitates, 3314, 1–10.CrossRefGoogle Scholar
  41. 41.
    Leander, B. S., Kuvardina, O. N., Aleshin, V. V., Mylnikov, A. P., and Keeling, P. J. (2003) Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans, J. Eukaryot. Microbiol., 50, 334–340.CrossRefPubMedGoogle Scholar
  42. 42.
    Okamoto, N., Horak, A., and Keeling, P. J. (2012) Description of two species of early branching dinoflagellates, Psammosa pacifica ng., nsp. and P. atlantica nsp., PLoS One, 7, e34900.Google Scholar
  43. 43.
    Stoeck, T., Kasper, J., Bunge, J., Leslin, C., Ilyin, V., and Epstein, S. (2007) Protistan diversity in the Arctic: a case of paleoclimate shaping modern biodiversity? PLoS One, 2, e728.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Park, S. J., Park, B. J., Pham, V. H., Yoon, D. N., Kim, S. K., and Rhee, S. K. (2008) Microeukaryotic diversity in marine environments, tan analysis of surface layer sediments from the East Sea, {iJ. Microbiol.,} 46, 244–249.Google Scholar
  45. 45.
    Takishita, K., Yubuki, N., Kakizoe, N., Inagaki, Y., and Maruyama, T. (2007) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures, Extremophiles, 11, 563–576.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. V. Mikhailov
    • 1
  • D. V. Tikhonenkov
    • 2
    • 3
  • J. Janouškovec
    • 3
    • 4
  • A. Y. Diakin
    • 5
  • M. V. Ofitserov
    • 6
  • A. P. Mylnikov
    • 2
  • V. V. Aleshin
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia
  3. 3.Department of BotanyUniversity of British ColumbiaVancouverCanada
  4. 4.Canadian Institute for Advanced ResearchTorontoCanada
  5. 5.Faculty of Science, Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
  6. 6.State Scientific Institute of Irrigation Fish Breeding, 142460Vorovskogo Settlement, Noginsk District, Moscow RegionRussia

Personalised recommendations