Advertisement

Biochemistry (Moscow)

, Volume 80, Issue 11, pp 1478–1484 | Cite as

A rapid and cost-effective method for DNA extraction from archival herbarium specimens

  • A. A. KrinitsinaEmail author
  • T. V. Sizova
  • M. A. Zaika
  • A. S. Speranskaya
  • A. P. Sukhorukov
Article

Abstract

Here we report a rapid and cost-effective method for the extraction of total DNA from herbarium specimens up to 50-90-year-old. The method takes about 2 h, uses AMPure XP magnetic beads diluted by PEG-8000-containing buffer, and does not require use of traditional volatile components like chloroform, phenol, and liquid nitrogen. It yields up to 4 μg of total nucleic acid with high purity from about 30 mg of dry material. The quality of the extracted DNA was tested by PCR amplification of 5S rRNA and rbcL genes (nuclear and chloroplast DNA markers) and compared against the traditional chloroform/isoamyl alcohol method. Our results demonstrate that the use of the magnetic beads is crucial for extraction of DNA suitable for subsequent PCR from herbarium samples due to the decreasing inhibitor concentrations, reducing short fragments of degraded DNA, and increasing median DNA fragment sizes.

Keywords

DNA extraction herbarium PCR 5S rRNA rbcL genomic markers sequence 

Abbreviations

CTAB

cetyltrimethylammonium bromide

MHA

Main Botanical Garden of the Russian Academy of Sciences

MW

Herbarium of the Biological Faculty of Moscow State University

PCR

polymerase chain reaction

PVP40

polyvinylpyrrolidone, 40 kDa

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sukhorukov, A. P., Mavrodiev, E. V., Struwig, M., Nilova, M. V., Dzhalilova, Kh. Kh., Balandin, S. A., Erst, A., and Krinitsyna, A. A. (2015) One-seeded fruits in the core Caryophyllales: their origin and structural diversity, PLoS One, 10, 1–38.CrossRefGoogle Scholar
  2. 2.
    Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., and Hickey, D. A. (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics, Trends Genet., 23, 167–172.CrossRefPubMedGoogle Scholar
  3. 3.
    Kress, W. J., and Erickson, D. L. (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH–psbA spacer region, PLoS One, 2, e508.Google Scholar
  4. 4.
    Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., and Bermingham, E. (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama, PNAS, 106, 1862118626.CrossRefGoogle Scholar
  5. 5.
    Srinivansan, M., Sedmak, D., and Jewell, S. (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids, Am. J. Pathol., 161, 1961–1971.CrossRefGoogle Scholar
  6. 6.
    Doyle, J. J., and Dickson, E. E. (1987) Preservation of plant species for DNA restriction endonuclease analysis, Taxon, 36, 715–722.CrossRefGoogle Scholar
  7. 7.
    Doyle, J. J., and Doyle, J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phyt. Bull., 19, 11–15.Google Scholar
  8. 8.
    Stewart, C. N., Jr., and Via, L. E. (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications, BioTechniques, 14, 748–749.PubMedGoogle Scholar
  9. 9.
    Porebski, S., Bailey L. G., and Baum, B. R (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components, Plant Mol. Biol. Rep., 15, 8–15.CrossRefGoogle Scholar
  10. 10.
    Sarkinen, T., Staats, M., Richardson, J. E., Cowan, R. S., and Bakker, F. T. (2012) How to open the treasure chest? Optimising DNA extraction from herbarium specimens, PLoS One, 7, e43808.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Drabkova, L., Kirschner, J., and Vlcek, C. (2002) Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae, Plant Mol. Biol. Rep., 20, 161–175.CrossRefGoogle Scholar
  12. 12.
    Levin, R. A., Wagner, W. L., Hoch, P. C., Nepokroeff, M., Piers, J. C., Zimmer, E. A., and Sytsma, K. J. (2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data, Am. J. Bot., 90, 107–115.CrossRefPubMedGoogle Scholar
  13. 13.
    Sar, A., Zidorn, C., Ellmerer, Ernst P., Ozgokce, F., Ongania, K.-H., and Stuppner, H. (2007) Phenolic compounds from Scorzonera tomentosa L., HCA, 90, 311–317.CrossRefGoogle Scholar
  14. 14.
    Sharma, A. D., Gill, P. K., and Singh, P. (2002) DNA isolation from dry and fresh samples of polysaccharide-rich plants, Plant Mol. Biol. Rep., 20, 415a–415f.CrossRefGoogle Scholar
  15. 15.
    Erkens, R. H. J., Cross, H., Maas, J. W., Hoenselaar, K., and Chatrou, L. W. (2008) Assessment of age and greenness of herbarium specimens as predictors for successful extraction and amplification of DNA, BLUMEA, 53, 407–428.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. A. Krinitsina
    • 1
    Email author
  • T. V. Sizova
    • 2
  • M. A. Zaika
    • 1
  • A. S. Speranskaya
    • 1
    • 3
  • A. P. Sukhorukov
    • 1
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  3. 3.Central Research Institute of EpidemiologyFederal Service on Customers Rights Protection and Human Well-being SurveillanceMoscowRussia

Personalised recommendations